版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的最大值为,若存在实数,使得对任意实数总有成立,则的最小值为()A. B. C. D.2.等比数列中,,则与的等比中项是()A.±4 B.4 C. D.3.已知函数,若则()A.f(a)<f(b)<f(c) B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b) D.f(c)<f(b)<f(a)4.已知向量,则是的()A.充分不必要条件 B.必要不充分条件C.既不充分也不必要条件 D.充要条件5.若复数(是虚数单位),则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.在三角形中,,,求()A. B. C. D.7.已知复数是纯虚数,其中是实数,则等于()A. B. C. D.8.已知正方体的棱长为2,点在线段上,且,平面经过点,则正方体被平面截得的截面面积为()A. B. C. D.9.如图所示,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为()A. B.C. D.10.已知函数(,,),将函数的图象向左平移个单位长度,得到函数的部分图象如图所示,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.四人并排坐在连号的四个座位上,其中与不相邻的所有不同的坐法种数是()A.12 B.16 C.20 D.812.若的展开式中的系数为-45,则实数的值为()A. B.2 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.曲线在点处的切线方程为__.14.已知随机变量,且,则______15.圆关于直线的对称圆的方程为_____.16.从编号为,,,的张卡片中随机抽取一张,放回后再随机抽取一张,则第二次抽得的卡片上的数字能被第一次抽得的卡片上数字整除的概率为_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)求不等式的解集;(2)若的最小值为,且,求的最小值.18.(12分)在中,角的对边分别为,且满足.(Ⅰ)求角的大小;(Ⅱ)若的面积为,,求和的值.19.(12分)新型冠状病毒肺炎疫情发生以来,电子购物平台成为人们的热门选择.为提高市场销售业绩,某公司设计了一套产品促销方案,并在某地区部分营销网点进行试点.运作一年后,对“采用促销”和“没有采用促销”的营销网点各选取了50个,对比上一年度的销售情况,分别统计了它们的年销售总额,并按年销售总额增长的百分点分成5组:,分别统计后制成如图所示的频率分布直方图,并规定年销售总额增长10个百分点及以上的营销网点为“精英店”.(1)请你根据题中信息填充下面的列联表,并判断是否有的把握认为“精英店与采用促销活动有关”;采用促销没有采用促销合计精英店非精英店合计5050100(2)某“精英店”为了创造更大的利润,通过分析上一年度的售价(单位:元)和日销量(单位:件)的一组数据后决定选择作为回归模型进行拟合.具体数据如下表,表中的:①根据上表数据计算的值;②已知该公司成本为10元/件,促销费用平均5元/件,根据所求出的回归模型,分析售价定为多少时日利润可以达到最大.附①:附②:对应一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.20.(12分)在中,角A,B,C的对边分别是a,b,c,且向量与向量共线.(1)求B;(2)若,,且,求BD的长度.21.(12分)在锐角三角形中,角的对边分别为.已知成等差数列,成等比数列.(1)求的值;(2)若的面积为求的值.22.(10分)如图,在三棱柱中,是边长为2的菱形,且,是矩形,,且平面平面,点在线段上移动(不与重合),是的中点.(1)当四面体的外接球的表面积为时,证明:.平面(2)当四面体的体积最大时,求平面与平面所成锐二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据三角函数的两角和差公式得到,进而可以得到函数的最值,区间(m,n)长度要大于等于半个周期,最终得到结果.【详解】函数则函数的最大值为2,存在实数,使得对任意实数总有成立,则区间(m,n)长度要大于等于半个周期,即故答案为:B.【点睛】这个题目考查了三角函数的两角和差的正余弦公式的应用,以及三角函数的图像的性质的应用,题目比较综合.2、A【解析】
利用等比数列的性质可得,即可得出.【详解】设与的等比中项是.
由等比数列的性质可得,.
∴与的等比中项
故选A.【点睛】本题考查了等比中项的求法,属于基础题.3、C【解析】
利用导数求得在上递增,结合与图象,判断出的大小关系,由此比较出的大小关系.【详解】因为,所以在上单调递增;在同一坐标系中作与图象,,可得,故.故选:C【点睛】本小题主要考查利用导数研究函数的单调性,考查利用函数的单调性比较大小,考查数形结合的数学思想方法,属于中档题.4、A【解析】
向量,,,则,即,或者-1,判断出即可.【详解】解:向量,,,则,即,或者-1,所以是或者的充分不必要条件,故选:A.【点睛】本小题主要考查充分、必要条件的判断,考查向量平行的坐标表示,属于基础题.5、A【解析】
将整理成的形式,得到复数所对应的的点,从而可选出所在象限.【详解】解:,所以所对应的点为在第一象限.故选:A.【点睛】本题考查了复数的乘法运算,考查了复数对应的坐标.易错点是误把当成进行计算.6、A【解析】
利用正弦定理边角互化思想结合余弦定理可求得角的值,再利用正弦定理可求得的值.【详解】,由正弦定理得,整理得,由余弦定理得,,.由正弦定理得.故选:A.【点睛】本题考查利用正弦定理求值,涉及正弦定理边角互化思想以及余弦定理的应用,考查计算能力,属于中等题.7、A【解析】
对复数进行化简,由于为纯虚数,则化简后的复数形式中,实部为0,得到的值,从而得到复数.【详解】因为为纯虚数,所以,得所以.故选A项【点睛】本题考查复数的四则运算,纯虚数的概念,属于简单题.8、B【解析】
先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的形状再求解.【详解】如图所示:确定一个平面,因为平面平面,所以,同理,所以四边形是平行四边形.即正方体被平面截的截面.因为,所以,即所以由余弦定理得:所以所以四边形故选:B【点睛】本题主要考查平面的基本性质,面面平行的性质定理及截面面积的求法,还考查了空间想象和运算求解的能力,属于中档题.9、D【解析】因为蛋巢的底面是边长为的正方形,所以过四个顶点截鸡蛋所得的截面圆的直径为,又因为鸡蛋的体积为,所以球的半径为,所以球心到截面的距离,而截面到球体最低点距离为,而蛋巢的高度为,故球体到蛋巢底面的最短距离为.点睛:本题主要考查折叠问题,考查球体有关的知识.在解答过程中,如果遇到球体或者圆锥等几何体的内接或外接几何体的问题时,可以采用轴截面的方法来处理.也就是画出题目通过球心和最低点的截面,然后利用弦长和勾股定理来解决.球的表面积公式和体积公式是需要熟记的.10、B【解析】
先根据图象求出函数的解析式,再由平移知识得到的解析式,然后分别找出和的等价条件,即可根据充分条件,必要条件的定义求出.【详解】设,根据图象可知,,再由,取,∴.将函数的图象向右平移个单位长度,得到函数的图象,∴.,,令,则,显然,∴是的必要不充分条件.故选:B.【点睛】本题主要考查利用图象求正(余)弦型函数的解析式,三角函数的图形变换,二倍角公式的应用,充分条件,必要条件的定义的应用,意在考查学生的数学运算能力和逻辑推理能力,属于中档题.11、A【解析】
先将除A,B以外的两人先排,再将A,B在3个空位置里进行插空,再相乘得答案.【详解】先将除A,B以外的两人先排,有种;再将A,B在3个空位置里进行插空,有种,所以共有种.故选:A【点睛】本题考查排列中不相邻问题,常用插空法,属于基础题.12、D【解析】
将多项式的乘法式展开,结合二项式定理展开式通项,即可求得的值.【详解】∵所以展开式中的系数为,∴解得.故选:D.【点睛】本题考查了二项式定理展开式通项的简单应用,指定项系数的求法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
对函数求导后,代入切点的横坐标得到切线斜率,然后根据直线方程的点斜式,即可写出切线方程.【详解】因为,所以,从而切线的斜率,所以切线方程为,即.故答案为:【点睛】本题主要考查过曲线上一点的切线方程的求法,属基础题.14、0.1【解析】
根据原则,可得,简单计算,可得结果.【详解】由题可知:随机变量,则期望为所以故答案为:【点睛】本题考查正态分布的计算,掌握正态曲线的图形以及计算,属基础题.15、【解析】
求出圆心关于直线的对称点,即可得解.【详解】的圆心为,关于对称点设为,则有:,解得,所以对称后的圆心为,故所求圆的方程为.故答案为:【点睛】此题考查求圆关于直线的对称圆方程,关键在于准确求出圆心关于直线的对称点坐标.16、【解析】
基本事件总数,第二次抽得的卡片上的数字能被第一次抽得的卡片上数字的基本事件有8个,由此能求出概率.【详解】解:从编号为,,,的张卡片中随机抽取一张,放回后再随机抽取一张,基本事件总数,第二次抽得的卡片上的数字能被第一次抽得的卡片上数字的基本事件有8个,分别为:,,,,,,,.所以第二次抽得的卡片上的数字能被第一次抽得的卡片上数字整除的概率为.故答案为.【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或(2)最小值为.【解析】
(1)讨论,,三种情况,分别计算得到答案.(2)计算得到,再利用均值不等式计算得到答案.【详解】(1)当时,由,解得;当时,由,解得;当时,由,解得.所以所求不等式的解集为或.(2)根据函数图像知:当时,,所以.因为,由,可知,所以,当且仅当,,时,等号成立.所以的最小值为.【点睛】本题考查了解绝对值不等式,函数最值,均值不等式,意在考查学生对于不等式,函数知识的综合应用.18、(Ⅰ);(Ⅱ),.【解析】
(Ⅰ)运用正弦定理和二角和的正弦公式,化简,即可求出角的大小;(Ⅱ)通过面积公式和,可以求出,这样用余弦定理可以求出,用余弦定理求出,根据同角的三角函数关系,可以求出,这样可以求出,最后利用二角差的余弦公式求出的值.【详解】(Ⅰ)由正弦定理可知:,已知,所以,,所以有.(Ⅱ),由余弦定理可知:,,.【点睛】本题考查了正弦定理、余弦定理、面积公式、二倍角公式、二角差的余弦公式以及同角的三角函数关系,考查了运算能力.19、(1)列联表见解析,有把握;(2)①;②元时【解析】
(1)直接由题意列出列联表,通过计算,可判断精英店与采用促销活动是否有关.(2)①代入表中数据,结合公式求出;②由①中所得的线性回归方程,若售价为,单价利润为,日销售量为,进而可求出日利润,结合导数可求最值.【详解】解:(1)由题意知,采用促销中精英店的数量为,采用促销中非精英店的数量为;没有采用促销中精英店的数量为,没有采用促销中非精英店的数量为,列联表为采用促销没有采用促销合计精英店352055非精英店153045合计5050100因为有的把握认为“精英店与采用促销活动有关”.(2)①由公式可得:所以回归方程为②若售价为,单件利润为,日销售为,故日利润,解得.当时,单调递增;当时,单调递减.故当售价元时,日利润达到最大为元.【点睛】本题考查了独立性检验,考查了线性回归方程的求法,考查了函数最值的求解.在求函数的最值时,常用的方法有:函数图像法、结合函数单调性分析最值、基本不等式法、导数法.其中最常用的还是导数法.20、(1)(2)【解析】
(1)根据共线得到,利用正弦定理化简得到答案.(2)根据余弦定理得到,,再利用余弦定理计算得到答案.【详解】(1)∵与共线,∴.即,∴即,∵,∴,∵,∴.(2),,,在中,由余弦定理得:,∴.则或(舍去).∴,∵∴.在中,由余弦定理得:,∴.【点睛】本题考查了向量共线,正弦定理,余弦定理,意在考查学生的综合应用能力.21、(1);(2).【解析】
(1)根据成等差数列与三角形内角和可知,再利用两角和的正切公式,代入化简可得,同理根据三角形内角和与余弦的两角和公式与等比数列的性质可求得,联立即可求解求的值.(2)由(1)可知,再根据同角三角函数的关系与正弦定理可求得,再结合的面积为利用面积公式求解即可.【详解】解:成等差数列,可得而,即,展开化简得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省绵阳市北川羌族自治县2025届九年级上学期1月期末考试化学试卷答案
- 山东省滨州市2025届高三上学期1月期末考试数学试题(含答案)
- 2025年度35KV电力设施建设与维护合同模板3篇
- 2024年一级建造师之一建工程法规题库附完整答案【历年真题】
- 2025年度互联网公司HR实习生培养及人才储备合同3篇
- 2024陶瓷行业品牌授权合作合同3篇
- 《财经应用文写作》课件-项目四 任务四 经济合同的相关专业名词解释
- 2024年金融服务风险评估与管理合同
- 2024集体土地评估与入市交易合同
- 2025年度人工智能语音助手开发与授权合同模板(含技术支持条款)3篇
- 数学思想与方法期末考试范围答案全
- 调研报告:加强市属国有企业内部审计工作现状、存在的问题及对策建议
- 教学事故(差错)认定处理表(模板)
- 内蒙古自治区巴彦淖尔市各县区乡镇行政村村庄村名居民村民委员会明细及行政区划代码
- 餐票模板合集
- 私募基金管理公司资产托管制度
- 三年级语文下册教案-14 蜜蜂3-部编版
- 数字信号处理:第一章 数字信号处理概述
- 中国风中国武术武术介绍PPT模板课件
- 兖州一中“循环大课堂教学模式”
- 胶原蛋白行业报告
评论
0/150
提交评论