CISSOID - 智能功率模块助力业界加速迈向基于碳化硅(SiC)的电动汽车-设计应用_第1页
CISSOID - 智能功率模块助力业界加速迈向基于碳化硅(SiC)的电动汽车-设计应用_第2页
CISSOID - 智能功率模块助力业界加速迈向基于碳化硅(SiC)的电动汽车-设计应用_第3页
CISSOID - 智能功率模块助力业界加速迈向基于碳化硅(SiC)的电动汽车-设计应用_第4页
CISSOID - 智能功率模块助力业界加速迈向基于碳化硅(SiC)的电动汽车-设计应用_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品文档-下载后可编辑CISSOID-智能功率模块助力业界加速迈向基于碳化硅(SiC)的电动汽车-设计应用当前,新型快速开关的碳化硅(SiC)功率晶体管主要以分立器件或裸芯片的形式被广泛供应,SiC器件的一系列特性,如高阻断电压、低导通电阻、高开关速度和耐高温性能,使系统工程师能够在电机驱动控制器和电池充电器的尺寸、重量控制和效率提升等方面取得显著进展,同时推动SiC器件的价格持续下降。然而,在大功率应用中采用SiC还存在一些重要的制约因素,包括经过良好优化的功率模块的可获得性,还有设计高可靠门级驱动的学习曲线。智能功率模块(IPM)通过提供高度集成、即插即用的解决方案,可以加速产品上市并节省工程资源,从而能够有效地应对上述两项挑战。

本文讨论了在电动汽车应用的功率转换器设计中选择CISSOID三相全桥1200VSiCMOSFET智能功率模块(IPM)体系所带来的益处,尤其表现在该体系是一个可扩展的平台系列。该体系利用了低内耗技术,提供了一种已整合的解决方案,即IPM;IPM由门极驱动电路和三相全桥水冷式碳化硅功率模块组成,两者的配合已经过优化和协调。本文不仅介绍了IPM的电气和散热特性,还讨论了IPM如何实现SiC器件优势的充分利用,及其中为关键的因素,即使门极驱动器设计及SiC功率电路驱动安全、可靠地实现。

图1CXT-PLA3SA12450AA三相全桥1200V/450ASiC智能功率模块IPM

凭借低内耗和增强的热稳定性实现更高的功率密度

CXT-PLA3SA12450AA是CISSOID三相全桥1200VSiC智能功率模块(IPM)体系中的一员,该体系包括了额定电流300A到600A的多个产品。这款三相全桥IPM具有较低导通损耗(Ron仅为3.25mΩ)、较低开关损耗,在600V/300A时开启和关断能量分别为7.8mJ和8mJ(见表1)。相比的IGBT功率模块,同等工况下的开关损耗降低了至少三分之二。CXT-PLA3SA12450AA通过一个轻量化的铝碳化硅(AlSiC)针翅底板进行水冷,结到流体的热阻(Rjl)为0.15°C/W。CXT-PLA3SA12450AA的额定结温高达175°C,门栅极驱动电路可以在高达125°C的环境中运行。该IPM能够承受高达3600V的隔离电压(已经过50Hz、1分钟的耐压测试)。

表1CXT-PLA3SA12450AA三相1200V/450ASiCMOSFET智能功率模块的主要特性

参数

测试条件

典型值

漏源电压Vds

1200V

连续漏极电流Id

VGS=15V,TC=25°C,Tj175°C

450A

VGS=15V,TC=90°C,Tj175°C

330A

静态导通电阻

VGS=15V,ID=300A,Tj=25°C

3.25mOhms

4mOhms

VGS=15V,ID=300A,Tj=175°C

5.25mOhms

开关损耗(导通)Eon

VDS=600V;VGS=-3/15V;

IDS=300A;L=50?H

7.8mJ

开关损耗(关断)Eoff

8mJ

隔离电压Viso

50HZ、1分钟的交流耐压测试,底板到电源引脚之间

3600VAC

热阻(结-流体)Rjl

每个开关位置都测试,流量:10L/min;50%乙二醇,50%水,流入端温度75°C

0.15°C/W

热阻(结-外壳)Rjc

每个开关位置都测试

0.13°C/W

工作结温Tj

175°C

底板尺寸

104mm(宽)

154mm(长)

重量

580g

三维模型和可信赖的散热特性使快速地实现功率转换器设计成为可能

CXT-PLA3SA12450AA的一大优势,即门级驱动和功率部分(含有AlSiC针翅水冷底板)高度集成。该特点使得IPM与电驱总成的其他部分,如直流电容、冷却系统可以快速结合,如图2所示。CISSOID提供了各个部件的的3D参考设计,客户的系统设计人员由此作为起点,可在极短的时间内实现目标系统设计。

IPM充分利用了SiC功率器件的低导通和低开关损耗特性,并与门级驱动进行了系统级的协调以获得整体性能的优化,在提供性能的同时,也有效地降低了散热系统的空间占用,并提高了功率转换器的效率。

图2CXT-PLA3SA12450AA与DC电容和水冷的集成

在Rjl(结到流体热阻)为0.15°C/W,流速为10L/min(50%乙二醇,50%水),入口水温75°C的条件下,可以计算出连续漏极电流允许值与外壳温度之间的关系(基于结温时的导通电阻和工作结温来计算),如图3所示。

图3CXT-PLA3SA12450AA连续漏极电流允许值与外壳温度之间的关系

连续漏极电流(允许值)有助于理解和比较功率模块的额定电流;品质因数(FigureofMerit,FoM)则揭示了相电流均值与开关频率的关系,如图4所示。该曲线是针对总线电压600V、外壳温度90°C、结温175°C和占空比为50%的情况计算的。FoM曲线对于了解模块的适用性更为有用。由于CXT-PLA3SA12450AA的可扩展性,图4还推断出了1200V/600A模块的安全工作范围(虚线所示)。

图4CXT-PLA3SA12450AA的相电流(Arms)与开关频率的关系

(测试条件:VDC=600V,Tc=90°C,Tj175°C,D=50%),以及对未来的1200V/600A模块(CXT-PLA3SA12600AA,正在开发中)进行推断

此外,门极驱动器还包括了直流侧电压监测功能,采用了更为紧凑的变压器模块;,CXT-PLA3SA12450AA的安全规范符合2级污染度要求的爬电距离。

鲁棒的SiC门极驱动器使实现快速开关和低损耗成为可能

CXT-PLA3SA12450AA的三相全桥门极驱动器设计,充分利用了CISSOID在单相SiC门极驱动器上所积累的经验,例如,CISSOID分别针对62mm1200V/300A和快速开关XM31200V/450ASiC功率模块设计的CMT-TIT8243[1,2]和CMT-TIT0697[3]单相栅极驱动器(见图5)。

和CMT-TIT8243、CMT-TIT0697一样,CXT-PLA3SA12450AA的工作环境温度也为125°C,所有元件均经过了精心选择和尺寸确认,以保证在此额定温度下运行。该IPM还凭借CISSOID的高温门极驱动器芯片组[4,5]以及低寄生电容(典型值为10pF)的电源变压器设计,使得高dv/dt和高温度环境下的共模电流降到点。

图5用于快速开关XM31200V/450ASiCMOSFET功率模块的CMT-TIT0697门极驱动器板

CXT-PLA3SA12450AA栅极驱动器仍有余量来支持功率模块的可扩展性。该模块的总门极电荷为910nC。当开关频率为25KHz时,平均门极电流为22.75mA。这远远低于板载隔离DC-DC电源的电流能力95mA。因此,无需修改门极驱动器板,就可以提高功率模块的电流能力和门极充电。使用多个并联的门极电阻,实际的dv/dt值可达10~20KV/?s。门极驱动电路的设计可以抵抗高达50KV/?s的dv/dt,从而在dv/dt可靠性方面提供了足够的余量。

门极驱动器的保护功能提高了系统的功能安全性

门极驱动器的保护功能对于确保功率模块安全运行至关重要,当驱动快速开关的SiC功率部件时更是如此。CXT-PLA3SA12450AA门极驱动电路可以提供如下保护功能:

欠压锁定(UVLO):CXT-PLA3SA12450AA门极驱动器会同时监测初级和次级电压,并在低于编程电压时故障。

防重叠:避免同时导通上臂和下臂,以防止半桥短路。

防止次级短路:隔离型DC-DC电源逐个周期的电流限制功能,可以防止门极驱动器发生任何短路(例如栅极-源极短路)。

毛刺滤波器:抑制输入PWM信号的毛刺,这些毛刺很可能是由共模电流引起的。

有源米勒钳位(AMC):在关断后建立起负的门极电阻旁路,以保护功率MOSFET不受寄生导通的影响。

去饱和检测:导通时,在消隐时间之后检查功率通道的漏源电压是否高于阈值。

软关断:在出现故障的情况下,可以缓慢关闭功

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论