版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
控制系统数学描述与建模第一页,共37页。控制系统的数学模型在控制系统的研究中有着相当重要的地位,要对系统进行仿真处理,首先应当知道系统的数学模型,然后才可以对系统进行模拟。同样,如果知道了系统的模型,才可以在此基础上设计一个合适的控制器,使得系统响应达到预期的效果,从而符合工程实际的需要。第二页,共37页。在线性系统理论中,一般常用的数学模型形式:传递函数模型(系统的外部模型)状态方程模型(系统的内部模型)零极点增益模型部分分式模型这些模型之间都有着内在的联系,可以相互进行转换。第三页,共37页。第一节系统的分类按系统性能分:线性系统和非线性系统连续系统和离散系统定常系统和时变系统确定系统和不确定系统。第四页,共37页。线性连续系统:用线性微分方程式来描述,如果微分方程的系数为常数,则为定常系统;如果系数随时间而变化,则为时变系统。今后我们所讨论的系统主要以线性定常连续系统为主。第五页,共37页。线性定常离散系统:离散系统指系统的某处或多处的信号为脉冲序列或数码形式。这类系统用差分方程来描述。第六页,共37页。非线性系统:系统中有一个元部件的输入输出特性为非线性的系统。第七页,共37页。第二节线性定常连续系统的微分方程模型微分方程是控制系统模型的基础,一般来讲,利用机械学、电学、力学等物理规律,便可以得到控制系统的动态方程,这些方程对于线性定常连续系统而言是一种常系数的线性微分方程。第八页,共37页。如果已知输入量及变量的初始条件,对微分方程进行求解,就可以得到系统输出量的表达式,并由此对系统进行性能分析。通过拉氏变换和反变换,可以得到线性定常系统的解析解,这种方法通常只适用于常系数的线性微分方程,解析解是精确的,然而通常寻找解析解是困难的。MATLAB提供了ode23、ode45等微分方程的数值解法函数,不仅适用于线性定常系统,也适用于非线性及时变系统。第九页,共37页。例exp3_1.m电路图如下,R=1.4欧,L=2亨,C=0.32法,初始状态:电感电流为零,电容电压为0.5V,t=0时刻接入1V的电压,求0<t<15s时,i(t),vo(t)的值,并且画出电流与电容电压的关系曲线。第十页,共37页。第三节传递函数描述一、连续系统的传递函数模型连续系统的传递函数如下:第十一页,共37页。对线性定常系统,式中s的系数均为常数,且a1不等于零,这时系统在MATLAB中可以方便地由分子和分母系数构成的两个向量唯一地确定出来,这两个向量分别用num和den表示。 num=[b1,b2,…,bm,bm+1] den=[a1,a2,…,an,an+1] 注意:它们都是按s的降幂进行排列的。第十二页,共37页。二、零极点增益模型零极点模型实际上是传递函数模型的另一种表现形式,其原理是分别对原系统传递函数的分子、分母进行分解因式处理,以获得系统的零点和极点的表示形式。第十三页,共37页。K为系统增益,zi为零点,pj为极点在MATLAB中零极点增益模型用[z,p,K]矢量组表示。即:z=[z1,z2,…,zm]p=[p1,p2,...,pn]K=[k]函数tf2zp()可以用来求传递函数的零极点和增益。第十四页,共37页。三、部分分式展开控制系统常用到并联系统,这时就要对系统函数进行分解,使其表现为一些基本控制单元的和的形式。函数[r,p,k]=residue(b,a)对两个多项式的比进行部分展开,以及把传函分解为微分单元的形式。向量b和a是按s的降幂排列的多项式系数。部分分式展开后,余数返回到向量r,极点返回到列向量p,常数项返回到k。[b,a]=residue(r,p,k)可以将部分分式转化为多项式比p(s)/q(s)。第十五页,共37页。举例:传递函数描述1)》num=[12,24,0,20];den=[24622];2)借助多项式乘法函数conv来处理:》num=4*conv([1,2],conv([1,6,6],[1,6,6]));》den=conv([1,0],conv([1,1],conv([1,1],conv([1,1],[1,3,2,5]))));第十六页,共37页。零极点增益模型:》num=[1,11,30,0];》den=[1,9,45,87,50];[z,p,k]=tf2zp(num,den)》z=0-6-5p=-3.0000+4.0000i-3.0000-4.0000i-2.0000-1.0000k=1结果表达式:第十七页,共37页。部分分式展开:》num=[2,0,9,1];》den=[1,1,4,4];[r,p,k]=residue(num,den)》p=0.0000+2.0000i0.0000-2.0000i-1.0000k=2r=0.0000-0.2500i0.0000+0.2500i-2.0000结果表达式:第十八页,共37页。第四节 状态空间描述状态方程与输出方程的组合称为状态空间表达式,又称为动态方程,经典控制理论用传递函数将输入—输出关系表达出来,而现代控制理论则用状态方程和输出方程来表达输入—输出关系,揭示了系统内部状态对系统性能的影响。第十九页,共37页。在MATLAB中,系统状态空间用(A,B,C,D)矩阵组表示。第二十页,共37页。举例:系统为一个两输入两输出系统》A=[16910;31268;47911;5121314];》B=[46;24;22;10];》C=[0021;8022];》D=zeros(2,2);第二十一页,共37页。第五节 模型的转换与连接一、模型的转换在一些场合下需要用到某种模型,而在另外一些场合下可能需要另外的模型,这就需要进行模型的转换。模型转换的函数包括:第二十二页,共37页。一、模型的转换residue:传递函数模型与部分分式模型互换ss2tf:状态空间模型转换为传递函数模型ss2zp:状态空间模型转换为零极点增益模型tf2ss:传递函数模型转换为状态空间模型tf2zp:传递函数模型转换为零极点增益模型zp2ss:零极点增益模型转换为状态空间模型zp2tf:零极点增益模型转换为传递函数模型第二十三页,共37页。用法举例:1)已知系统状态空间模型为:》A=[01;-1-2];B=[0;1];》C=[1,3];D=[1];》[num,den]=ss2tf(A,B,C,D,iu)%iu用来指定第n个输入,当只有一个输入时可忽略。》num=152;den=121;》[z,p,k]=ss2zp(A,B,C,D,iu)》z=-4.5616p=-1k=1-0.4384-1第二十四页,共37页。2)已知一个单输入三输出系统的传递函数模型为:》num=[00-2;0-1-5;120];den=[16116];》[A,B,C,D]=tf2ss(num,den)》A=-6-11-6B=1C=00-2D=010000-1-5001001200第二十五页,共37页。3)系统的零极点增益模型:》z=[-3];p=[-1,-2,-5];k=6;》[num,den]=zp2tf(z,p,k)》num=00618den=181710》[a,b,c,d]=zp2ss(z,p,k)》a=-1.000000b=12.0000-7.0000-3.1623103.162300c=001.8974d=0注意:零极点的输入可以写出行向量,也可以写出列向量。
第二十六页,共37页。4)已知部分分式:》r=[-0.25i,0.25i,-2];》p=[2i,-2i,-1];k=2;》[num,den]=residue(r,p,k)》num=2091》den=1144注意余式一定要与极点相对应。第二十七页,共37页。二、模型的连接1、并联:parallel格式:[a,b,c,d]=parallel(a1,b1,c1,d1,a2,b2,c2,d2)[a,b,c,d]=parallel(a1,b1,c1,d1,a2,b2,c2,d2,inp1,inp2,out1,out2)[num,den]=parallel(num1,den1,num2,den2)第二十八页,共37页。2、串联:series格式:[a,b,c,d]=series(a1,b1,c1,d1,a2,b2,c2,d2)[a,b,c,d]=series(a1,b1,c1,d1,a2,b2,c2,d2,out1,in2)[num,den]=series(num1,den1,num2,den2)第二十九页,共37页。3、反馈:feedback格式:[a,b,c,d]=feedback(a1,b1,c1,d1,a2,b2,c2,d2)%将两个系统按反馈方式连接,一般而言,系统1为对象,系统2为反馈控制器。第三十页,共37页。[a,b,c,d]=feedback(a1,b1,c1,d1,a2,b2,c2,d2,sign)%系统1的所有输出连接到系统2的输入,系统2的所有输出连接到系统1的输入,sign用来指示系统2输出到系统1输入的连接符号,sign缺省时,默认为负,即sign=-1。总系统的输入/输出数等同于系统1。第三十一页,共37页。[a,b,c,d]=feedback(a1,b1,c1,d1,a2,b2,c2,d2,inp1,out1)
%部分反馈连接,将系统1的指定输出out1连接到系统2的输入,系统2的输出连接到系统1的指定输入inp1,以此构成闭环系统。[num,den]=feedback(num1,den1,num2,den2,sign)
%可以得到类似的连接,只是子系统和闭环系统均以传递函数的形式表示。sign的含义与前述相同。第三十二页,共37页。4、闭环:cloop(单位反馈)格式:[ac,bc,cc,dc]=cloop(a,b,c,d,sign)%通过将所有的输出反馈到输入,从而产生闭环系统的状态空间模型。当sign=1时采用正反馈;当sign=-1时采用负反馈;sign缺省时,默认为负反馈。[ac,bc,cc,dc]=cloop(a,b,c,d,outputs,inputs)%表示将指定的输出outputs反馈到指定的输入inputs,以此构成闭环系统的状态空间模型。一般为正反馈,形成负反馈时应在inputs中采用负值。[numc,denc]=cloop(num,den,sign)%表示由传递函数表示的开环系统构成闭环系统,sign意义与上述相同。第三十三页,共37页。举例应用:1)exp3_2.m系统1为:系统2为:求按串联、并联、正反馈、负反馈连接时的系统状态方程及系统1按单位负反馈连接时的状态方程。第三十四页,共37页。2)exp3_3.m 系统1、系统2方程如下所示:求部分并联后的状
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024融资租赁合同书之公寓租赁合同
- 2024年度监理工程师职责履行合同
- 2024年中介参与下的二手房买卖定金合同
- 2024年度软件开发与维护技术服务合同
- 2024年建筑工地瓦工承包合同
- 商品房购房合同协议书
- 技术合同 技术许可合同样本
- 2024某大学人文社科科研项目合同书
- 2024借名购房合同协议范本
- 2024年离婚协议书格式要求
- 深度解读强基计划-被强基计划课件
- 第五章肺孢子菌病课件
- 魏晋南北朝服饰课件
- 无机及分析化学考试题(附答案)
- 可可脂巧克力课件
- 交通连四方 杭州交通的发展课件
- 梨树栽培技术 课件
- 第13讲 教学设计的ASSURE模式(V5.1)公开课一等奖省优质课大赛获奖课件
- 三年级上册美术课件-3.色彩的变化|赣美版 (共19张PPT)
- 理想与前途主题班会课件
- 颜色标准LAB值对照表
评论
0/150
提交评论