一元二次方程根与系数关系 - 初中数学第三册教案_第1页
一元二次方程根与系数关系 - 初中数学第三册教案_第2页
一元二次方程根与系数关系 - 初中数学第三册教案_第3页
一元二次方程根与系数关系 - 初中数学第三册教案_第4页
一元二次方程根与系数关系 - 初中数学第三册教案_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一元二次方程根与系数关系——初中数学第三册教案

一、素养训练目标

(一)学问教学点:1.使同学了解一元二次方程及整式方程的意义;2.把握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.

(二)力量训练点:1.通过一元二次方程的引入,培育同学分析问题和解决问题的力量;2.通过一元二次方程概念的学习,培育同学对概念理解的完整性和深刻性.

(三)德育渗透点:由学问来源于实际,树立转化的思想,由设未知数列方程向同学渗透方程的思想方法,由此培育同学用数学的意识.

二、教学重点、难点

1.教学重点:一元二次方程的意义及一般形式.

2.教学难点:正确识别一般式中的“项”及“系数”.

三、教学步骤

(一)明确目标

1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让同学拿出事先预备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.同学的实际操作,为解决下面的问题奠定基础,同时培育同学手、脑、眼并用的力量.

2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应当怎样求出截去的小正方形的边长?

老师启发同学设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学学问不够用,需要学习新的学问,学了本章的学问,就可以解这个方程,从而解决上述问题.

板书:“第十二章一元二次方程”.老师恰当的语言,激发同学的求知欲和学习爱好.

(二)整体感知

通过章前引例和节前引例,使同学真正熟悉到学问来源于实际,并且又为实际服务,学习了一元二次方程的学问,可以解决很多实际问题,真正体会学习数学的意义;产生用数学的意识,调动同学乐观主动参加数学活动中.同时让同学感到一元二次方程的解法在本章中处于特别重要的地位.

(三)重点、难点的学习及目标完成过程

1.复习提问

(1)什么叫做方程?曾学过哪些方程?

(2)什么叫做一元一次方程?“元”和“次”的含义?

(3)什么叫做分式方程?

问题的提出及解决,为深刻理解一元二次方程的概念做好铺垫.

2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?

引导,启发同学设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观看、比较,得到整式方程和一元二次方程的概念.

整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程.

一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程.

一元二次方程的概念是在整式方程的前提下定义的.一元二次方程中的“一元”指的是“只含有一个未知数”,“二次”指的是“未知数的最高次数是2”.“元”和“次”的概念搞清晰则给定义一元三次方程等打下基础.一元二次方程的定义是指方程进行合并同类项整理后而言的.这实际上是给出要判定方程是一元二次方程的步骤:首先要进行合并同类项整理,再按定义进行推断.

3.练习:指出下列方程,哪些是一元二次方程?

(1)x(5x-2)=x(x+1)+4x2;

(2)7x2+6=2x(3x+1);

(3)

1.教材P.6练习2.

2.思索题:

1)能不能说“关于x的整式方程中,含有x2项的方程叫做一元二次方程?”

2)试说出一元三次方程,一元四次方程的定义及一般形式(学有余力的同学思索).

五、板书设计

第十二章一元二次方程

12.1用公式解一元二次方程

1.整式方程:……

4.例1:……

2.一元二次方程……:

……

3.一元二次方程的一般形式:

……

5.练习:……

……

……

12.6一元二次方程的应用(二)

一、素养训练目标

(一)学问教学点:使同学会用列一元二次方程的方法解有关面积、体积方面的应用问题.

(二)力量训练点:进一步培育同学化实际问题为数学问题的力量和分析问题解决问题的力量,培育用数学的意识.

(三)德育渗透点:进一步使同学深刻体会转化以及方程的思想方法、渗透数形结合的思想.

二、教学重点、难点

1.教学重点:会用列一元二次方程的方法解有关面积、体积方面的应用题.

2.教学难点:找等量关系.列一元二次方程解应用题时,应留意是方程的解,但不肯定符合题意,因此求解后肯定要检验,以确定适合题意的解.例如线段的长度不为负值,人的个数不能为分数等.

三、教学步骤

(一)明确目标

初一学过一元一次方程的应用,实际上是据实际题意,设未知数,列出一元一次方程求解,从而得到问题的解决,但有的实际问题,列出的方程不是一元一次方程,而是一元二次方程,这就是我们本节课要讨论的一元二次方程的应用——有关面积和体积方面的实际问题.

(二)整体感知

本小节是“一元一次方程的应用”的连续和进展.由于能用一元一次方程(或一次方程组)解的应用题,一般都可以用算术方法解,而需用一元二次方程来解的应用题,一般说是不能用算术法来解的,所以,讲解本小节可以使同学熟悉到用代数方法解应用题的优越性和必要性.

从列方程解应用题的方法来说,列出一元二次方程解应用题与列出一元一次方程解应用题类似,都是依据问题中的相等关系列出方程、解方程、推断根是否适合题意,作出正确的答案.列出一元二次方程,其应用相当广泛,如在几何、物理及其他学科中都有大量问题存在;本节课的内容是关于面积、体积的实际问题.

通过本节课学习,培育同学将实际问题转化为数学问题的力量以及用数学的意识,渗透转化的思想、方程的思想及数形结合的思想.

(三)重点、难点的`学习和目标完成过程

1.复习提问

(1)列方程解应用题的步骤?

(2)长方形的周长、面积?长方体的体积?

2.例1现有长方形纸片一张,长19cm,宽15cm,需要剪去边长是多少的小正方形才能做成底面积为77cm2的无盖长方体型的纸盒?

解:设需要剪去的小正方形边长为xcm,则盒底面长方形的长为(19-2x)cm,宽为(15-2x)cm,

据题意:(19-2x)(15-2x)=77.

整理后,得x2-17x+52=0,

解得x1=4,x2=13.

∴当x=13时,15-2x=-11(不合题意,舍去.)

答:截取的小正方形边长应为4cm,可制成符合要求的无盖盒子.

本题老师启发、引导、同学回答,留意以下几个问题.

(1)由于要做成底面积为77cm2的无盖的长方体形的盒子,假如底面的长和宽分别能用含未知数的代数式表示,这样依据长×宽=长方形面积,便可以找准等量关系,列出方程,这是解决本题的关键.

(2)求出的两个根肯定要进行实际题意的检验,本题假如截取的小正方形边长为13时,得究竟面的宽为-11,则不合题意,所以x=13舍去.(3)本题是一道典型的实际生活的问题,在学习本章之前,这个问题无法解决,但学了一元二次方程的学问之后,这个问题便可以解决.使同学深刻体会数学学问应用的价值,由此提高同学学习数学的爱好和用数学的意识.

练习1.章节前引例.

同学笔答、板书、评价.

练习2.教材P.42中4.

同学笔答、板书、评价.

留意:全面积=各部分面积之和.

剩余面积=原面积-截取面积.

例2要做一个容积为750cm3,高是6cm,底面的长比宽多5cm的长方形匣子,底面的长及宽应当各是多少(精确到0.1cm)?

分析:底面的长和宽均可用含未知数的代数式表示,则长×宽×高=体积,这样便可得到含有未知数的等式——方程.

解:长方体底面的宽为xcm,则长为(x+5)cm,

解:长方体底面的宽为xcm,则长为(x+5)cm,

据题意,6x(x+5)=750,

整理后,得x2+5x-125=0.

解这个方程x1=9.0,x2=-14.0(不合题意,舍去).

当x=9.0时,x+17=26.0,x+12=21.0.

答:可以选用宽为21cm,长为26cm的长方形铁皮.

老师引导,同学板书,笔答,评价.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论