智能材料中的光纤传感系统_第1页
智能材料中的光纤传感系统_第2页
智能材料中的光纤传感系统_第3页
智能材料中的光纤传感系统_第4页
智能材料中的光纤传感系统_第5页
已阅读5页,还剩52页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

智能材料中的光纤传感系统第1页/共57页2

高锟华裔物理学家,为光纤通讯、电机工程专家,华文媒体誉之为“光纤之父”、普世誉之为“光纤通讯之父”(FatherofFiberOpticCommunications),曾任香港中文大学校长。2009年,与威拉德·博伊尔和乔治·埃尔伍德·史密斯共享诺贝尔物理学奖。

第2页/共57页3高锟——光纤之父博伊尔&史密斯——发明CCD图像传感器2009年诺贝尔奖物理学奖得主Fig.1贝尔实验室GeorgeSmith和WillardBoyle将可视电话和半导体存储技术结合发明了CCD原型Fig.2现代CCD芯片外观第3页/共57页4

赵梓森中国工程院院士,国际电气电子工程师协会高级会员,他是我国光纤通信技术的主要奠基人和公认的开拓者,被誉为“中国光纤之父”。武汉中国光谷的首席科学家,因为亲手研发了中国第一根实用化光纤光缆和第一套光纤通信系统,而被誉为“中国光纤之父”。第4页/共57页5什么是光纤?光纤是光导纤维的简写,是一种由玻璃或塑料制成的纤维,可作为光传导工具。第5页/共57页6传输原理:光的全反射(又称全内反射,指光由光密介质(即光在此介质中的折射率大的)射到光疏介质(即光在此介质中折射率小的)的界面时,全部被反射回原介质内的现象)第6页/共57页7全反射的应用:光导纤维和液晶背光光纤在结构上有中心和外皮两种不同介质,光从中心传播时遇到光纤弯曲处,会发生全反射现象,而保证光线不会泄漏到光纤外。背光是电子工业中一种常用的照明形式,常被用于LCD显示器上。背光是从显示器的侧边或是背后提供照射,其光源可能是电光面板,发光二极管等。电光面板提供整个表面均匀的发光。与光纤的要求不同,在边缘型LED背光中,要求破坏发光管(LightingPipe)表面的全发射条件,使得光线可以从发光管中泄漏出来而产生照明的效果。第7页/共57页8微细的光纤封装在塑料护套中,使得它能够弯曲而不至于断裂。通常,光纤的一端的发射装置使用发光二极管(lightemittingdiode,LED)或一束激光将光脉冲传送至光纤,光纤的另一端的接收装置使用光敏元件检测脉冲。在日常生活中为什么光纤被用作长距离的信息传递?

通常光纤与光缆两个名词会被混淆。多数光纤在使用前必须由几层保护结构包覆,包覆后的缆线即被称为光缆。光纤外层的保护层和绝缘层可防止周围环境对光纤的伤害,如水、火、电击等。光缆分为:缆皮、芳纶丝、缓冲层和光纤。光纤:同轴电缆相似,只是没有网状屏蔽层。中心是光传播的玻璃芯。

第8页/共57页9光纤的芯在多模光纤(在给定的工作波长上传输多种模式的光纤)中,芯的直径是50μm和62.5μm两种,大致与人的头发的粗细相当。而单模光纤(只能传一种模式的光纤

)芯的直径为8μm~10μm。第9页/共57页10为什么要有包层和涂覆层呢?芯外面包围着一层折射率比芯低的玻璃封套,俗称包层,包层使得光线保持在芯内。再外面的是一层薄的塑料外套,即涂覆层,用来保护包层。光纤通常被扎成束,外面有外壳保护。纤芯通常是由石英玻璃制成的横截面积很小的双层同心圆柱体,它质地脆,易断裂,因此需要外加一保护层。第10页/共57页11光纤传输的优点:频带宽:频带的宽窄代表传输容量的大小。损耗低:光纤传输损耗还有两个特点,一是在全部有线电视频道内具有相同的损耗,不需要像电缆干线那样必须引入均衡器进行均衡;二是其损耗几乎不随温度而变,不用担心因环境温度变化而造成干线电平的波动。

重量轻:光纤是玻璃纤维,比重小,使它具有直径小、重量轻的特点,安装十分方便。

抗干扰能力强:因为光纤的基本成分是石英,只传光,不导电,不受电磁场的作用,在其中传输的光信号不受电磁场的影响,故光纤传输对电磁干扰有很强的抵御能力。光纤中传输的信号不易被窃听,利于保密。

保真度高:因为光纤传输一般不需要中继放大,不会因为放大引入新的非线性失真。

成本不断下降:由于制作光纤的材料(石英)来源十分丰富,随着技术的进步,成本还会进一步降低第11页/共57页12光纤的应用通信应用利用光导纤维进行的通信叫光纤通信。一对金属电话线至多只能同时传送一千多路电话,而根据理论算,一对细如蛛丝的光导纤维可以同时通一百亿路电话!铺设1000公里的同轴电缆大约需要500吨铜,改用光纤通信只需几公斤石英就可以了。

医学应用光导纤维内窥镜可导入心脏和脑室,测量心脏中的血压、血液中氧的饱和度、体温等。用光导纤维连接的激光手术刀已在临床应用,并可用作光敏法治癌。

第12页/共57页13传感器应用光导纤维可以把阳光送到各个角落,还可以进行机械加工。计算机、机器人、汽车配电盘等也已成功地用光导纤维传输光源或图像。如与敏感元件组合或利用本身的特性,则可以做成各种传感器,测量压力、流量、温度、位移、光泽和颜色等。在能量传输和信息传输方面也获得广泛的应用。

艺术应用由于光纤的良好的物理特性,光纤照明和LED照由于光纤的良好的物理特性,光纤照明和LED照明已越来越成为艺术装修美化的用途。第13页/共57页14光纤技术与应用1,2,3

对什么是光纤有更深的了解了吗?到此光纤的基本知识介绍完毕。第14页/共57页153.1发展概述

用光导纤维构成智能材料的传感系统是从70年代末开始的.(3个阶段)1.把光纤埋入先进复合材料,用来监测复合材料的应变及温度。目的是用光纤完成多种参数测量和信号传输,解决的主要问题是光纤、光纤传感器和复合材料类型选择与设计、光纤和复合材料相容性研究、光纤埋入工艺探索等。

2.大量开展了用光纤传感器监测复合材料固化、材料承载后动态性能测试和材料损伤评估等关键技术项目的基础研究。其工程和学术上的价值在于:①促进了先进复合材料,如碳纤维或有机纤维加强的树脂基复合材料在结构件中的实际应用;②光纤传感技术和先进复合材料成功地结合,为发展智能材料奠定了技术基础。3.90年代初,光纤智能蒙皮完成关键技术研制和飞行性能评估,进入应用研究阶段。第15页/共57页16飞机装配光纤智能蒙皮部位示意图(深色部位)

第16页/共57页17第17页/共57页18

装有智能蒙皮的战斗机具有如下优点:(1)用于武器装备外壳的先进复合材料加工成型过程中随时监测热压成型工艺中复合材料的温度和固化程度,提高了材料使用的可靠度,并可避免安全设计余量过大而造成的浪费和整机质量的增加,这一直是航空设计领域的难题;(2)起飞前自动进行机身构件及蒙皮的非损伤评估,预测飞行可能性;(3)在飞行过程中,实时、自动分布监测机身和机翼的空气动力学参数、所受应力及温度变化;(4)在战斗过程中,实时监测飞行负载环境及损伤的形成,评价战斗损伤,计算剩余实力,存贮相关数据,并向飞行员提供飞行限制;(5)着陆以后,智能蒙皮向地面人员提供积累的飞行数据以及有关结构完整性和所需维修的信息。第18页/共57页19使用光纤传感器的智能材料分为智能结构和智能蒙皮。1.智能结构:智能结构是指大型智能构件(如桥梁、建筑物、大坝的水泥预制件,核反应堆、火箭发射台的基座,航天飞行器、陆地战车和潜艇的框架等)。它可测量结构的载荷大小、振动幅度、温度和应力分布、应变、扭曲、蠕变、层解、微裂及其他损伤,广泛用于载荷引起的结构疲劳和地震灾害预测等军用及民用大型设施。2.智能蒙皮:智能蒙皮则用于机翼、潜艇外壳、推进器叶片等。它除具有智能结构的性能外,与内部执行器配合,还可自动检测和控制壳体振动、流体与表面引起的噪音,自动检测和调节材料的多种性能(如反光性能、反辐射性能、电或热导性能、通风渗透性能等),或改变自身形状。第19页/共57页20第20页/共57页21第21页/共57页22第22页/共57页23第23页/共57页243.2智能材料中传感系统的选择

集成型智能材料由在基体材料中埋人传感系统、人工神经网络和执行器(驱动)系统组成。对传感器的选择应满足如下基本要求。

(1)满足强度相容要求;

(2)满足界面相容要求;

(3)满足工艺相容要求;

(4)满足场分布相容要求;

(5)满足尺寸相容要求。第24页/共57页25

先进复合材料中埋入光纤传感阵列取得成功,正是因为它们基本符合上述传感介质与基体材料的相容关系。对复合材料来说,其纤维增强组分和分层结构适合光纤的埋入。对光纤来说,它更具有其他类型传感介质无可比拟的优点。光导纤维具有传感和传输双重功能,即光纤中传输光波,经一定结构的光纤传感回路,可以使光的传输强度、偏振、相位或波长受到待测物理量的调制,被调制后的信号仍在光纤中传播。省去了金属导线,减少了电磁干扰。光纤作为传输载体时直径细小、质量轻、易弯曲、耐高温并便于埋入复合材料。除此之外还具有抗电磁干扰、耐化学腐蚀、传输带宽较宽、用单根光纤可以进行波分复用和复用等优点。作为传感介质,用光纤组成的干涉型传感器可测量温度、压力、速度、流量、位移、电磁场等多种物理量并且有极高的灵敏度。因此光纤已成为当前智能材料首选的信息传感和传输的理想载体。第25页/共57页263.3智能材料用特种光纤

光纤的基本属性使它适于作为集成型智能材料的传感,但在具体应用中还有一些特殊要求。1.细径光纤2.特殊涂覆光纤(聚酰亚胺涂层光纤)3.抗疲劳光纤4.单模保偏光纤5.双模光纤6.同心双通光纤第26页/共57页27普通通信光纤光纤呈圆柱形,它由纤芯、包层与涂敷层三大部分组成第27页/共57页281、纤芯

纤芯位于光纤的中心部位(直径d1约9~50微米),其成份是高纯度的二氧化硅,此外还掺有极少量的掺杂剂如二氧化锗,五氧化二磷等。掺有少量掺杂剂的目的是适当提高纤芯的光折射率(n1)

2、包层

包层位于纤芯的周围(其直径d2约125微米),其成份也是含有极少量掺杂剂的高纯度二氧化硅。而掺杂剂(如三氧化二硼)的作用则是适当降低包层的光折射率(n2),使之略低于纤芯的折射率。

3、涂敷层

光纤的最外层是由丙烯酸酯、硅橡胶和尼龙组成的涂敷层,其作用是增加光纤的机械强度与可弯曲性。一般涂敷后的光纤外径约1.5厘米。第28页/共57页29第29页/共57页30第30页/共57页311.细径光纤

普通单模光纤的芯/包层直径为9-125um,多模光纤为50-125um,加上外保护涂层直径为250um。先进复合材料中典型的加强碳纤维的直径只有10um。因此相对来说,光纤显得太粗,埋入复合材料后会在光纤周围形成树脂富集区。树脂富集区的大小与光纤直径及光纤与碳纤维相对取向有关。在其他条件相同的情况下,当光纤与碳纤维垂直走向时,树脂富集区最大。随两种纤维走向逐渐平行,树脂富集区也随之减小。树脂富集区大小随光纤直径的变化示于表3-1,它随光纤直径的减小而缩小。复合材料受到外力作用时,在树脂富集区将发生应力集中,应力值可能比均匀复合区高出一个数量级,造成复合材料强度下降。第31页/共57页32光纤周围树脂富集区光纤外径对形成树脂富集区的影响光纤外径(树脂富集区(光纤外径树脂富集区1409.86904.26603.14402.29第32页/共57页33

一般来说,埋入复合材料作传感系统使用的光纤,要求外径尺寸与复合材料的层间厚度相近。

制造细径光纤可以采用两种方法。对小长度光纤(几米至上百米)一般用腐蚀法制造。如果用量较大,应在光纤拉丝工艺中加以控制。除光纤直径以外,光纤在复合材料中相对于加强纤维(如碳纤维)的走向及埋入深度(埋在第几层之间),对复合材料强度及检测灵敏度有显著影响。但这种影响又与光纤直径、涂层材料、复合材料基体和测量的量等多种因素有关。因此针对不同使用要求,应做出权衡选择。第33页/共57页34从已完成的大量研究工作中,可得出如下结论。(1)光纤夹在加强纤维的两直排层间并与加强纤维平行,对复合材料沿此方向的拉伸强度的影响可以忽略不计。这种结构适于测量复合材料的温度和应变。(2)用于检测断裂临界负载造成的损伤时,光纤应埋在靠近最大应变的表层,并与上、下直排加强纤维正交,如图3-3中⑤,这样可获得最大灵敏度。(3)光纤外径小于复合材料层间厚度(120um~140um)

时材料的拉伸强度下降较小,不影响大多数情况下使用。(4)埋入光纤根数对强度有一定影响。用不用数量的光纤埋入单位体积材料中。第34页/共57页35光纤与加强纤维的各种取向

光纤埋入复合材料剖面图

第35页/共57页362特殊涂覆光纤

智能材料传感器光纤埋入复合材料时,光纤涂层应具有较高的弹性模量和良好的耐高温性能。常用的紫外固化丙烯酸类涂层对光纤的附着力较差,而且固化后仍有明显的塑性。这种一次被覆光纤在复合材料中与基体材料的耦联性差,不能有效地将应变耦合给光纤,因而影响应力测量灵敏度。初期的实验曾使用裸光纤,光纤表面虽具有很好的刚性,但很脆,不能在恶劣环境下使用。光纤涂层的耐高温特性主要是复合材料成型工艺要求的。由于使用的树脂不同,复合材料的热压成型工艺一般在150℃~390℃下进行。实验表明,如果在复合材料中埋人丙烯酸涂层光纤,当复合材料温度为160℃时,由于涂层性能下降,导致复合材料的层间剪切强度下降8%,纵向压缩强度下降26%;而高于175℃时丙烯酸涂层根本不能使用。第36页/共57页37

聚酰(xiān

)亚胺涂层光纤可同时解决上述两个问题。聚酰亚胺类树脂如热固性聚酰亚胺(PI)已被正式用于高性能光纤涂层,它固化后有足够的刚性,长期使用温度可达300℃~350℃,短期可经受450℃~500℃高温,200℃以下工作寿命超过50000h,因此聚酰亚胺涂层光纤是智能材料与结构中使用的惟一理想实用光纤。

金属涂层光纤也是特殊涂覆光纤的重要品种。金属涂层一般都具备耐高温和刚性好的特性,满足埋人复合材料加热成型的工艺要求和应力耦合的必要条件。但常用的铝涂层光纤埋人复合材料后,由于铝的氧化层与树脂亲合力差,影响了它的实际使用。当前金属涂层光纤用于树脂基和水泥基智能材料的研究工作正在进行,研究的重点是寻找适当的金属涂层。它应与树脂有较强的亲合力或能抗水泥碱性的腐蚀,同时还要满足涂覆工艺方便、成本低廉的要求。第37页/共57页383抗疲劳光纤影响硅基光纤长期可靠性的两个重要因素是由静态疲劳引起的光纤强度衰减和渗氢引起的光纤损耗增加。在光纤的制作过程中,光纤表面不可避免地会产生某些微裂纹和微缺陷,在使用过程中,如成缆、敷设造成的弯曲和应力,引起光纤微裂纹末端应力集中,使光纤强度下降。另外,即使光纤在存放状态下,由于环境中微量氢气和水汽也会产生应力腐蚀现象,使微裂纹扩展。埋入智能材料的光纤多用于测量应力和温度,因此经常处在应力状态中。此外,随温度的变化复合材料的有机树脂也会产生少量的氢气。这些因素都会加速光纤的疲劳过程,使已埋入复合材料的光纤的长期可靠性受到影响。解决这—问题的有效途径是使用抗疲劳光纤。第38页/共57页39

抗疲劳光纤是在光纤包层外用化学气相沉积法直接沉积一层碳膜,然后再涂上一层聚合物防护涂层。碳膜厚度一般为30nm~80nm,光纤结构如图所示。

光纤作为智能材料传感系统埋入复合材料后不可能再更换或取出。在智能材料经常受到应力载荷或完成自适应功能而变形的情况下,光纤的长期可靠性和寿命尤为重要,因此必须使用抗疲劳光纤。碳涂覆光纤也是一种特殊涂覆光纤。

碳涂覆工艺最成熟,且成本低、抗疲劳性能优异,已成为抗疲劳光纤的主要品种。它在军用光纤信号及图像传输、海底光缆等场合也有重要应用。第39页/共57页404单模保偏光纤

普通单模光纤中有两个偏振模传输。在理想状态下,它们应有相同的偏振状态。但在实际中由于光纤几何形状不标准、结构不对称、工艺中的残余应力等原因,使偏振模的简并退化而形成两个正交的偏振模。又由于外界温度、应力、微弯等因素的影响,普通单模光纤中产生线性双折射和圆双折射,使这两个偏振模发生耦合,因而光纤内部传输光束的偏振状态在空间和时间上是随机变化的。光纤传输状态的不确定性,妨碍了它在干涉型光纤传感器中的应用。单模保偏光纤具有在传输过程中保持入射偏振状态不变的作用。制作这种光纤的主要途径是人为增加光纤内部双折射,使其远远超过上述各种因素的影响,可使被激励的一个偏振本征模的功率不会耦合到另一个正交模中去,从而保持了入射偏振状态的稳定。这种保偏光纤也叫高双折射光纤。第40页/共57页41

几种保偏光纤的结构(a)椭芯光纤(b)熊猫光纤(c)碟形光纤(d)椭圆包层光纤

第41页/共57页425双模光纤

光波是一种电磁波。它在光纤这种波导结构中传输必须满足麦克斯韦方程和由光纤材料、结构决定的边界条件。由于工作波长和光纤结构不同,光纤内部可以传输不同的电磁波。不同的传输模具有不同的电磁分布(强度分布)、不同的传播常数(传播速度)、不同的偏振状态。单模光纤只允许最低阶模,在弱波导理论中叫LP01模(或基模)传输。如上节所述,纤芯具有圆形截面的单模光纤的LP01模由两个偏振方向相互垂直的本征模组成,这两个模有相同的强度分布和不同的偏振状态。第42页/共57页43满足单模传输的条件是

对一确定的光纤,满足上式的波长叫截止波长为:是除基模LP0l以外的次低阶模LPll模的截止波长,当工作波长时该模截止,只有基模LP0l传输当时,LP0l和LP11模同时传输,工作在这种状态下的光纤称双模光纤。

第43页/共57页44LP11模由奇模LP11O和偶模LP11e组成。实际上双模包括了LP01、LP11O和LP11e中各自相互垂直的六个本征振模,如图所示。

LP11和LP01模的强度分布和偏振结构(a)LP01模(b)LP11模第44页/共57页45

智能材料中的光纤传感系统,一般是把光纤组成干涉仪使用。光纤干涉仪由信号光纤(信号臂)和参考光纤(参考臂)组成。信号光纤受到外界待测场的扰动,感生了传输光束的相位变化,与参考臂未受扰动的相位比较,通过相干光强度的变化检测出待测量。如果把干涉仪信号臂和参考臂都埋人复合材料,参考臂光纤也受到与信号臂同样的影响,产生同样的相位变化,就起不到参考作用,因而无法进行相干检测。保偏光纤或双模光纤传输的不同模式,随外界环境变化将产生相位差。因此在智能材料实际应用时,用单根光纤(保偏光纤或者双模光纤)中两个不同的传输模分别作为信号通道和参考通道,代替组成光纤干涉仪的两根光纤,是解决上述问题的理想方案,并已取得满意效果。智能材料中使用保偏光纤或双模光纤的意义不仅是完成上述干涉测量,而且由于用一根光纤代替两根光纤,使埋人光纤根数减少一半,这对提高复合材料强度和简化嵌埋工艺都是非常重要的。第45页/共57页466同心双通光纤同心双通道光纤可同时检测出智能材料外力冲击的位置和大小。光纤由同轴双层纤芯组成,中心是弱波导单模纤芯,周围是环状大数值孔径多模纤芯。当光纤在复合材料中受到扰动时,光从弱波导单模纤芯泄漏到多模环形芯中。在环形波导中,光的传播速度与在单模芯中不同。在光纤检测端能收到两个信号,一个来自中芯,一个来自环形芯。信号到达时间差确定了扰动位置,环状多模芯中光的强度确定了扰动大小。这种光纤于80年代末期由美国布朗大学开发成功并用于智能材料实验。最近两年俄罗斯航空学院详细研究了这种光纤的结构参数对检测灵敏度的影响并对传感器结构进行了改进。第46页/共57页47光纤传感器在生活中的应用1、在民用工程布局中的使用民用工程的布局监测是光纤光栅传感器最活跃的范畴。力学参量的丈量关于桥梁、矿井、地道、大坝、建筑物等的保护和情况监测是非常重要的。通过丈量上述布局的应变散布,能够预知布局有些的载荷及情况。光纤光栅传感器能够贴在布局的表面或预先埋入布局中,对布局一起进行冲击检测、形状操控和振荡阻尼检测等,以监视布局的缺点情况。别的,多个光纤光栅传感器能够串接成一个传感网络,对布局进行准散布式检测,能够用计算机对传感信号进行长途操控。第47页/共57页48①光纤传感器在温度测验中的使用它是使用光在光纤中传输能够发作后向散射,在光纤中注入一定能量和宽度的激光脉冲,那么它在光纤中传输的一起不断发作后向散射光波,这些后向散射光波的情况受到地点光纤散射点的温度影响而有所改动,将散射回来的光波经波分复用、检测解调后,送入信号处置体系便可将温度信号实时显示出来,并且由光纤中光波的传输速度和背向光回波的时刻对这些信息定位热电偶测温最高1600多度,蓝宝石测温可达2000多度。第48页/共57页49②光纤传感器在裂缝监测中的使用当地下深部发作变形时,必将揉捏砂浆体发作相应形变,致使裂缝或滑移(错动)的发作,进而导致埋入光纤的微弯,该处的微弯将损坏光波导的全反射条件,使光损耗添加,发作衰减,使用光纤监测地下深部变形,即是基于微弯衰减的传感机制。埋入洞内的光纤,全部是传感有些,受深部变形作用,光纤发作微弯或挠曲,致使光损耗增大第49页/共57页50③光纤传感器在光纤光缆中的使用

光缆通讯在我国已有20多年的使用史,这段前史也即是光通讯技能的发展史和光纤光缆的发展史。光纤光缆在我国的发展能够分为这样几个阶段:对光缆可用性的讨论;替代市内局间中继线的市话电缆和PCM电缆;替代有线通讯干线上的高频对称电缆和同轴电缆。这两个替代应该说是完成了;现正在替代接入网的主干线和配线的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论