微积分下第二版课后习题答案同济大学_第1页
微积分下第二版课后习题答案同济大学_第2页
微积分下第二版课后习题答案同济大学_第3页
微积分下第二版课后习题答案同济大学_第4页
微积分下第二版课后习题答案同济大学_第5页
已阅读5页,还剩51页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

习题1—1解答,求f(x,y),f(1,1),f(xy,x),xy11.设f(x,y)xyxyyf(x,y)解f(x,y)xyxy;f(1,1)1y;f(xy,x)x2y2;1yxyxyxf(x,y)xy2xy2.设f(x,y)lnxlny,证明:f(xy,uv)f(x,u)f(x,v)f(y,u)f(y,v)f(xy,uv)ln(xy)ln(uv)(lnxlny)(lnulnv)lnxlnulnxlnvlnylnulnylnvf(x,u)f(x,v)f(y,u)f(y,v)3.求下列函数的定义域,并画出定义域的图形:(1)f(x,y)1x2y21;4xy2(2)f(x,y)ln(1x2y2);(3)f(x,y)1x22;yz2a2b2c2(4)f(x,y,z)xyz.1x2y2z2解(1)D{(x,y)x1,y1(2)D(x,y)0x2y21,y24x(3)D(x,y)x2y2z212ab2c2(4)D(x,y,z)x0,y0,z0,x2y2z214.求下列各极限:1xy101limx0y1(1)=01x2y2limln(xex1y0ln(1e0)ln210y)x2y2(2)lim2xy4x0y0lim(2xy4)(2xy4)x0y01(3)xyxy(24)4xysin(xy)limsin(xy)x2x2y0limx2y0(4)yxy5.证明下列极限不存在:xyxyxy22x2y2(xy)2limx0y0;limx0y0(1)(2)P(x,y)沿y2x趋向(0,0)(1)证明如果动点xylimx2xxyx0x2x3;lim则x0y2x0(0,0),则limxyy0x2y0如果动点P(x,y)沿x2y趋向lim3y3y0xyy所以极限不存在。P(x,y)沿yx趋向(0,0)(2)证明:如果动点x2y2limx41;x0limx0yx0则x2y2(xy)2x4x2y24x4x04x4x2如果动点P(x,y)沿y2x趋向(0,0),则limx2y2(xy)2lim0x0y2x0所以极限不存在。6.指出下列函数的间断点:2x(1)f(x,y)yy2x2;(2)zlnxy。(1)为使函数表达式有意义,需y2x0,所以在y2x0处,函数间断。解xy,所以在处,函数间断。xy(2)为使函数表达式有意义,需1—2习题xy1.(1)zyxz1xyxz1xyxy;.22yzycos(xy)2ycos(xy)sin(xy)y[cos(xy)sin(2xy)]x(2)yzxcos(xy)2xcos(xy)sin(xy)x[cos(xy)sin(2xy)](3)zy(1xy)y1yy2(1xy)y1,x1zln(1xy)yx1xy,lnz=yln(1+xy),两边同时对y求偏导得zyzz[ln(1xy)xyxy1xy1xy](1xy)y[ln(1xy)];y112yx2z1;x3yzx32yx(x3y),x3y(4)xxyxyx2x2uyu1yzuyyxz1,yyxzlnx,zxzlnx;(5)xzz2uz(xy)xyuz(xy)u,(xy)zln(xy)z1z1(6)2z,y;x1()1(xy)2zz1(xy)2zzy,zx,z0,z1,z0;2.(1)xyxxxyyy(2)zasin2(axby),zbsin2(axby),xyz2a2cos2(axby),z2abcos2(axby),z2b2cos2(axby).xxxyyyfy22xz,f2xyz2,f2yzx2,f2z,f2x,f2z,3xyzxxxzyzf(0,0,1)2,f(1,0,2)2,f(0,1,0)0.xxxzyzz2sin2(xt),zsin2(xt),z2cos2(xt),zcos2(xt)42222xtxttt2zz2cos2(xt)2cos2(xt)0.22xttt115.(1)zyex,zex,dzyexdxyyyyexdy;xx2yxx2x(2)z1ln(x2y2),z,zxdxx2y2dy;xyyy,dzx2y22yxx22yx221y2yxydxxdyxx(3)z,z,dz;xy2xy221(y)2x1(y)2xxx2y2y2(4)uyzx,uzxyzlnx,uyxyzlnx,yz1xyzduyzxyz1dxzxyzlnxdyyxyzlnxdz.xyxdxydy,dzzx2y2,zz,则,zxy226.设对角线为x2y2x2y2xy当x6,y8,x0.05,y0.1时,zdz60.058(0.1)=-0.05(m).6822zx2y2,7.设两腰分别为x、y,斜边为z,则yxdxydy,x2y2xzx,zy,dzxy2x2y22设x、y、z的绝对误差分别为、、,xyz当x7,y24,x0.1,y0.1时,z7224225xyzdz70.1240.1722420.124=0.124,z的绝对误差zz0.1240.496%.z的相对误差25z8.设内半径为r,内高为h,容积为V,则,dV2rhdrrdh,2Vr当r4,h20,r0.1,h0.1时,VdV23.144200.13.14420.155.264(cm3).h,V2rh,Vr22rh习题1—3yxxyzdufdxfdyfdzdxxdxydxzdxzz2aeax2a(ax1)1.1(xy)2z1(xy)2z1(xy)2zy[zaxz2axy(ax1)]axexax2(1)(1a2).==zyx222(ax1)4x2e2axzffx4x3x4yarcsin1x2y2xln(x4y4)2.xxx==1244x3arcsin1x2y2xy44(1x2y2)(x2y2)yyyzffy4y3arcsin==x4y121x2y244y3arcsin1x2y2yln(x4y4).y(1x2y2)(x2x44y2)u=2xfyexyfu=2yfxexyf3.(1)x,y.1212u1uyuf,1=xf1f=yfz2(2)x=z,z.yy1222uu=xfxzfu(3)x=fyfyzf,,=xyf3.yz12323uu3yu=2xfyff=2yfxfff(4)x,z=.121233zzxffyf,14.(1)x,2y12zx2f1yyfyy2f,x11112zfxyyyffy1fy(fxf)fxyfyfy12,11111121112y2ffxffx2x(fxf)fxfx2f2xff1zyyy1211122122111222(2)xzy2f2xyfz2xyfx2f,,y12122zf2yf2xyfx2xy2f2xyfy2x12x122y2(fy2f2xy)2yf2xy(fy2f2xy).1112221222yfy4f4xy3f4x2y2f21112222zf2xf2xyfxyyy2f2xyf2yfy2y12y12122yfy2(f2xyfx2)2xf2xy(f2xyfx2)11112221222yf2xf2xy3f2x3yf5x2y2f121122122zfyfy2y2xyfx2f2xf2xy1x2y21212xf2xy(f2xyfx2)x2(f2xyfx2)1111221222xf4x2y2f4x3yfx4f1111222u1uuxuy3uxuy3u1u5sxsys2x2ytxtyt2x2y,uu,us1u4x3uu3uu2xy4y3u4x3uu1u()2,2xy4y()2()2()()2()22,tusutuxuy()2()2()2()2.6(1)设F(x,y,z)xyze(,F1e(xyz),F1e(xyz)xyz),xyF1e(xyz)z,zxzFFx1y1F,yFzzz(2)设F(x,y,z)zx2y2tan,x2y2xzz13Ftanx2y2sec2()(xxy222y2)2xz22xx2y2x2y2xzxzy2z=yx,tansec22x2y2x22x2y2(1)(x2y2)(2yz)yzz3Fytanx2y2sec222x2y2x2y2x2y2yzyzx22yztansec2=,x2y2x2y2x2y21zzF1xzysec=tan2222,xy22x2y2x2y2zxxzxzzFxcotcsc2x2y,F2x2y2x2y2x2y2zyzFycotx2ycsc2.yzyzzF2x2y2x2y2xy22zyzxxzyxyz(3)设F(x,y,z)x2yz2xyz,F1F2yF1x,xyzxyzzFxz2xyzxyzxyxzFFx=,y=.yxyzxyFzz(4)设F(x,y,z)xlnzxlnzlny,F1,F1Fx1,zz2zyzzyxyzzxzFyz2Fxz,y(xz),FxzyFzz7.设F(x,y,z)x2y3z2sin(x2y3z),F12cos(x2y3z),xF24cos(x2y3z),F36cos(x2y3z),zyxzFxz1F2F3,yy,F3zzzz1.xy8.设F(x,y,z)(cxaz,cybz),Fc,Fc,Fab,x1y2z122bxzFxzzzF,axbc.cc1,yyFaFazby1212z9.(1)方程两边同时对x求导得dx2xy((63zz11))dydz2x2y,dy,dxdx解之得dydx3z12x4y6zdz0,dyxdxdx(2)方程两边同时对z求导得dxyz,dzxydxdy10,dzdzdx解之得dyzxdy2x2y2z0dzdz.dzxy(3)方程两边同时对x求偏导得usinvuuvxv,1eusinvucosv,xeu(sinvcosv)1xx解之得uuvcosveu0eucosvusinv,.xu[eu(sinvcosv)1]xxx同理方程两边同时对y求偏导得ucosvsinvucosvv,uu,0euxeu(sinvcosv)1yyyv解之得uusinveuv1euyycosvusinv,y.[(sinvcosv)1]xueu习题1-4u数l1.求下列函数的方向导Po(1)ux22y3z2,P1,1,0,l1,1,20u2x2,u4y4,u6z0,l0(1,1,2)zP0解:xy666P0P0P0P0P0ul2*14*(1)2.666P0(2)u(y)z,P(1,1,1),l(2,1,1);x0u解:xu1z(y)(y)1,yz(y)z1()1,z1xxxxP0P2PP000uzP0(y)zln(y)0,l0(2,1,1)P0666xxul(1)*21*11.666P0;3(3)uln(2y2),P(1,1),xl与轴夹角为ox0ux2xx2y21,P0解:P0uy2yx2y21,P0P0由题意知则,,3613l0(cos,cos)(,)3622ul313.1*11*222P0(4)uxyz,P(5,1,2),P(9,4,14),lPP.0101uxyz2,P0P0uyxz10,P0P0uzP0xy5,P04312(,,),0131313l(4,3,12),lul12982*410*35*.13131313P02.求下列函数的梯度gradf(1)f(x,y)sin(x2y)(cos(xy2);fcos(x2y)*(2xy)sin(xy2)*y2,解:xfycos(x2y)*x2sin(xy2)*(2xy),gradf(2xycos(x2y)y2sin(xy2),x2cos(x2y)2xysin(xy2))yx(2)f(x,y)ey.xfx(y)eyye11ey(1y),xxx解:yxyxx2xf1yxyeyey(x)ey(11),xxxxyxy2111xey(1y),xgradf(e())。yxxxy(,1,3)处,山坡的高度z由公式z5x22y2近似,其33.一个登山者在山坡上点24中x和y是水平直角坐标,他决定按最陡的道路上登,问应当沿什么方向上登。zx2x3,4,解:3(,1,3)33(,1,)2424zy4y(3,1,3)(,1,)332424按最陡的道路上登,应当沿(3,4)方向上登。TxTyy(1y)(12x),x(1x)(12y)4.解:11(,)916沿方向gradT11(,)435.解:设路径为yf(x),在点(x,y)处gradT(2x,8y)yf(x)在(x,y)点的切向量为(1,dy)dxdxdyycx4gradT平行于切向量,2x8y(1,2),y2x4因为过习题1-51、求曲线x1t,yt1,zt2在对应于t1点处的切线及法平面方程。tt1t1时,x(1),y(1)2,z(1)1,2解:当{x'(1),y'(1),z'(1)}{1(1t)1t,t(t1)T,2t}{1,1,2}(1t)2t24(1,2,1)2t1x12y2z1x12y2z1,即:21故所求切线方程为:48141法平面方程为:(x1)(y2)2(z1)0即:2x8y16z114下列空间曲线2在指定点处的切线2、求和法平面方程y22x2(1)在点(1,1,1)yz222解:将方程两端对x求导,得dyxdy2x2y0dxdxy在M(1,1,1)处T(1,1,1)dy2y2zdz0dzxdxzdxdxx1y1z1故所求的切线方程为:1法平面方程:xyz1xyz6222(2)xyz0在点(1,2,1)解法1:将方程两端对x求导,得2x2ydy2zdz0ydyzdzxdxdxdxdxdydzdydz1dxdx10dxdxyzyx0时,有当J11xzyxxydy111,11zxyzdxJdz1dxJyz1,dy,dzdxdx1,zxxy,{1,0,1}Tyzyz(1,2,1)(1,2,1)(1,2,1)x1z1故所求的切线方程为:11y20xyz(1)0(2)(1)0即:xz0法平面方程:2xdx2ydy2zdz0解法2:将方程组两端求微分:得dxdydz0∴曲线在点(1,2,1)处的切向量为3.(题略)yF'(P)1,F'(P)12,F'(P)=-1,曲面在点解:(1)令F(x,y,z)=arctg-z,x2x0y0z0即:x-y-2z-=0;21(x1)1(y1)(1)(z)0P的切平面方程为:-,2240zzx1y1x1y1,即:1144法线方程为:;112122(2)令F(x,y,z)zylnxz则F1,F1,F11xzxyz曲面在点(1,1,1)点处的切平面的法向量为:n{1,1,2}故所求的切平面方程为:(1)(x1)(1)(y1)2(z1)0即:xy2z0法线方程为:x1y1z1112xy(3)令F(x,y,z)=2z+2z-8,F'(P)4ln2,F'(P)4ln2,F'(P)=-x0y0z016ln2,曲面在点P的切平面方程为:4ln2(x-2)-4ln2(y-2)-16ln2(z-1)=0,0x2y2z1x2y2z1,即:114即:x-y-4z=0,法线方程为:4ln24ln216ln2zxxyyxy1z,11xyxy114、解:z{1,}{,}33(1,2)(1,2)dy又∵抛物线y24x在(1,2)点处的切线斜率为:1dx(1,2)dx∴抛物线y24x在(1,2)点处偏向x轴正向的切线方向为T1,dy{1,1}(1,2)∴T011,22故所求的方向导数为:zT,,22111133226263(1,2)习题1-61(题略).fx42x0,f42y0解:由,有x=2,y=-2,即P(2,-2)为f(x,y)的驻点,y0f2,2f0,2f2,2f(P)2又x2D(P)=4>0,x2=-2xyy200故P(2,-2)为f(x,y)的极大值点,其极大值为f(2,-2)=8.02(题略).xf3x26y39令0x22130y有y3x90驻点:(5,6)和(1,6)解:由f2y6x18令0y2f2f62f6x2y22xxy12x36240,而2xf26x2(6)2(5,6)6x30(5,6)(5,6)(5,6)(5,6)∴f(x,y)在点(5,6)取得极小值f(5,6)88又∵6x2(6)2x240(1,6)1236(1,6)(1,6)∴f(x,y)在点(1,6)不取得极值3、求zx2y2在闭区域x24y24上的最大值和最小值z2x0xz2y0解:由,得唯一驻点(0,0)y又∵在边界x4y24即椭圆2y21上,zx2y245y2y(1,1)x24d(45y)由0,得驻点:y0(1,1)dy∴所有可能的极值点为:(0,0)相应的函数值为:0(2,0)4(-2,0)(0,-1)(0,1)4-1-14、求抛物线yx2和直线xy20之间的最短距离。解:设P(x,y)为抛物线yx2上任意一点,它到直线xy20的距离为dxy2,d最小当且仅当d最小22此问题即是求d21(xy2)2在条件y2x下的最小值。2解法1(用拉格朗日乘数法)设L1(xy2)2(yx2)22L12(xy2)12x令0(12)20xyx111xy20得唯一驻点(,)24yx20L2(xy2)(1)令0y由,即2Lyx2令0故由实际问题知抛物线yx2和直线xy20之间的最短距离在在,为:72ddmin118(,)24解法2(转化为无条件极值)设抛物线yx2上点P(x,x),它到直线xy20的距离为2xx22dxy2221∵d最小当且仅当d(xx22)2最小22设f(x)1(xx22)22∴f(x)(xx22)(12x)令0唯一驻点x12f(x)(12x)(12x)(xx22)(2)(12x)22(x2x2)12f(1)(12x)22(x2x2)70221∴当2x时,f(x)有极小值,从而该极小值就是所求的最小值(∵唯一驻点)∵d1xx22=7228212故抛物线yx和直线xy20之间的最短距离为72285、求抛物线zx2y2被平面xyz1截成一椭圆,求原点到此椭圆的最长与最短距离。解:设椭圆上任意一点为(x,y,z),它到原点的距离为dx2y2z2此问题即是求dx2y2z2在条件zx2yxyz1下的最大值和最小值。2令Lx2y2z2(x2y2z)(xyz1)L2x2x令0①xL2y2y令0②y由L2z令0③zLx2y2z令0④Lxyz1令0⑤由①-②得2(1)(xy)0若1代入①,得0,再代入④,z1<0,不合题意21,有xy2xzyx13,z23,解得2xz122代入④,⑤由∴驻点为:P(13,13,13)和P(13,13,13)222212953∴dx2y2z953,dx2y2z22PP21PP215953由实际问题知,所求最大值和最小值存在,分别为93和6(题略).2H22解:设圆柱高为H,圆锥高为h,圆柱圆锥底半径为r,则浮标体积V=r3rh,r2(3H2h)=0故:3V-(1)浮标表面积S(r,h,H)=2rH2rr2h22r(Hr2h2)2(3H2h)+Vr令L(r,h,H)=2r(Hr2h2)[3Lrr22r(3H2h)=02(Hr2h2)2由(2)r2h2Lhrh22r2=0(3)rh22LH2r3r20(4)22rh55,r=2h,再由(2),有H=h,hr,代入0,故有(3)有332r2h2222r,r)为S(r,h,H)h=r,(r,555r于实际问题存在最值,故当H=h,h2时,材料最省。5唯一驻点,由7(题略)解设BC=a,则横截面积11(2a2hctg)h=(a+hctg)h,a=Shctg,湿周S=(BC+AD)h=22hhsinShctg2hsinF(h,)=a2CDa2hfsin20Sctg2由(1)(2)hf12cosh0sin2SS0,,由(2)有1-2cos,由(1),h=,即()为唯一驻点,故当,4333334Sh=时,湿周最小.341、解:在任意一个面积微元d上的压力微元dFgxd,所以,习题2-1gxd侧所受的水压力F该平面薄片一D2、解:在任意一个面积微元d上的电荷微元dF(,)xyd,所以,该平面薄片的电荷总量Q(x,y)dD3、解:因为0x1,0y1,所以x2y21xy1,又为单调递增函数,lnu,由二重积所以lnxy1lnxy122分的保序性得lnxy1dlnxy1d220x10y10x10y14、解:积分区域D如图2-1-1所示,所以该物体的质量1dy2y(x2y2)dx(4y4y28y3)dy418M(x2y2)d3330y0Ddyyf(x,y)dxdx1f(x,y)dy5、解:(1)积分区域如图2-1-2所示,所以11000x4dyyf(x,y)dxdxxf(x,y)dy22(2)积分区域如图2-1-3所示,所以0y20x/2(,)1y211f(x,y)dx(3)积分区域如图2-1-4所示,所以dx2xx2fxydydy212x02ydxxf(x,y)dydyf(x,y)dxlne1e(4)积分区域如图2-1-5所示,所以000ey6、解:(1)积分区域如图2-1-6所示,所以224311x11/4x611xyddxxxydyxxxdx113/435x20355500D1y2(4y2)dy1564xyddy4xy2dx2222y(2)积分区域如图2-1-7所示,所以22002D(3)积分区域如图2-1-8所示,所以eddxxexydydxxexydy0ex(e1xe1x)dxex(e1xe1x)dx1101xy11x01x1D(ee2xe1)dx1(ee1e2x)dxee1010(4)积分区域如图2-1-9所示,所以22193136(x2y2x)ddy(x2y2x)dxy3ydyy282400y/2D7、解:,0ra,22xrcos,yrsin,所以(1)积分区域如图2-1-10所示,令fx,yddarf(rcos,rsin)dr故202Dxrcos,yrsin,所以0,0r2sin,d2sinrf(rcos,rsin)dr(2)积分区域如图2-1-11所示,令f(x,y)d故00D8、解:sin,xrcos,yrsin,所以令0,0r(1)积分区域如图2-1-12所示,4cos2故rr1dr12sinsectandsecdx(x2y)dyd211x24cos24400x2000xrcos,yrsin,所以0,0r2sin,a4dr3(2)积分区域如图2-1-13所示,令a2y2dar22)dxa故dy(x2y800009、解:(1)积分区域如图2-1-14所示,故xx1dy2(xx3)dx92dxdx224y21y211Dx(2)积分区域如图2-1-15所示,令xrcos,yrsin,所以0,0r1,故21x2y1r2rdr211r22ddrdr121r421xy21r2000Ddr11r4rr31dr21r040d(1r)11dr21142241r41r400111arcsinr21(1r4)221022280(3)积分区域如图2-1-16所示,故3(x2y2)ddy(x2y2)dx3a(2ay2a2ya)dy14a4ay33ayaaD(4)积分区域如图2-1-17所示,令xrcos,yrsin,所以02,arb,2故1(x2y2)2ddbr2drba23330aD10、解:积分区域如图2-1-18所示,由图形的对称性得:S4S4d,所以1D1sin2a2cos24a2S4drdr24a2sin2da40000图2-1-1图2-1-2图2-1-3图2-1-4图2-1-5图2-1-6图2-1-10图2-1-7图2-1-8图2-1-9图2-1-11图2-1-12图2-1-13图2-1-14图2-1-15图2-1-16图2-1-17图2-1-18习题2-21、解:Q(x,y,z)dv2、化三重积分为直角坐标中的累次积分2y,下曲面为z0,解:(1)因为积分区域的上曲面为开口向上的旋转抛物面zx2积分区域在xoy坐标面上的投影区域D:0x1;0y1x,所以xydyx2fx,y,zdvdx1x1y2fx,y,zdz000(2)因为积分区域的上曲面为开口向下的抛物柱面z2x2与下曲面为开口向上的旋转抛物面zx22y2围成,二曲面的交线在xoy平面上的投影为圆xy1,即221x1dy:1x2y1x2fx,y,zdvdxfx,y,zdz11x22x2,所以11x2x22y2x2y2z2x22z0(3)因为积分区域的上曲面为开口向上的旋转抛物面zxy,下曲面为,积22xoyD:1x1;x2y1,所以分区域在坐标面上的投影区域xyfx,y,zdvdxdyfx,y,zdz11x2y21x203、解:积分区域如图2-2-1所示111x(1x6)dx0xzdxdydzxdxdyzdzxdxy2dy611y1121011x2x2另解:因为积分区域f(x,y,z)xz关于第一坐标是奇函数,关于坐标面对称,又yozxzdxdydz0。所以0zh(0,0,z)作平行与xoy时,过面的平面,4、解:积分区域如图2-2-2所示,当R2R2x2y2zRzh与立体的截面为D:圆,因而D的半径为,面积为zz2,hh2zzz故R2h2zdxdydz2hz3Rzdzdxdydzh4h200Dz5、求下列立体的体积解(1)曲面所围立体是球体与旋转抛物面的一部分(如图2-2-3所示),用柱面坐标计算:22Vdvrdrddzddr5rdzr20041r1r233)2[(5](554)224203160图2-2-1图2-2-2图2-2-3z1xz0xoy平面,下曲面为,积分区域在坐标(2)因为积分区域的上曲面为D:y2x1;1y1,所以面上的投影区域xydzdy(1x)dx2y2ydy8114Vdvdydx111x11102215101y2y26、利用柱面坐标计算下列三重积分解:(1)因为积分区域的上曲面为开口向上的上半球面2z2xy2,下曲面为开口向上的旋转抛物面zx2y22zxy22z2xy2得z2z,,将代入解此方程得z1积分区域在xoy坐标面上的投影区域D:x2y21,由柱坐标公式xy得:D:02,0r1xyzrdz211712。1zdvddr2r22r2rrdr24r22000(2)因为积分区域的上曲面为平面z2,下曲面为开口向上的旋转抛物面2zxy2,2将z2代入2zx2y2得x2y24,所以积分区域在xoy坐标面上的投影区域D:x2y24,由柱坐标公式得:D:02,0r2xyxy12322163(x2y2)dvddrr3dz2r2rdr0222。00r2/27、利用球面坐标计算下列三重积分解:(1)用球面坐标计算(x2y2z2)dvr4sindrdddsindr4dr2100015412(cos)r5500(2)用球面坐标计算zdv/4sincosd2acosr3drrcosr2sindrddd2000/4sincos(2acos)d8a4/4sincosd12454008a4/47cos6a46608、选用适当的坐标计算下列三重积分0rcos:0解:(1)积分区域为球,故用球面坐标计算:,所以202x2y2z2dvd/2drr2sindr2/2sindcosr3drcos2000002sincos4d1cos5/21/24251000xoyxy121,用直角坐标公得到平面上的一个圆22zy代入zxy2(2)将21zdvdx1dyzdz,由于计算量较大,请同学一试。1x22y式计算111x2x2y2cos,yrsin,zzxr用柱坐标计算zdvddrzrdzd2sin12r(4r2sin2r4)dr2sin2rsin00r200d1653153642268sin603(3)用柱坐标xrcos,yrsin,zz计算116ddr2rz2rdz2rz2rdr()zdv2112331500000(4)用直角坐标计算1xy2z3dvxdxydyzdzxdx42x4y4dy01x2128dxxy1xxy12336400000习题2-3线段的方程为yx1,1x2,所以1、解:(1)因为连接点(1,0)和(2,1)的直(xy)1ds2[x(x1)]11(1)2dx22dx212ta2sin2tatatdt1Lxydsa(sin)(cos)22n2cos2n220(2)La2n1dt2a2n12022yds2a1cost[a(1cost)]2(asint)2dt0(3)L332a22(1cost)dt4a20(4)因为星形线的参数方程为xacos3t,yasin3t,所以222xyds42a3(3acos2tsint)2(3asin2tcost)2dx330L12a32costsintdx6a3sin2t26a355500(5)因为折线ABCD由线段AB,BC和CD构成,在线段AB上,xy0,在线的BC上,y0,而在线段CD上,x1,z2,yt,0t3且dsdydtx2yzdsxyzdsxyzdsx2yzds00312t2dt922L0ABBCCDzdstcosttsint2(sinttcost)21dtt0L0(6)3122t2d(2t2)12t23t02223001r,所以2、解:因为曲线L的极坐标方程为12443d,又sdsrrd223323L4412cosu1d(sinu)dtanudu2sinucos2usin2u(1sin2u)211/21/2d(sinu)1sinu1sinu12sin2u1sinu21sinu11sinuCln11C221ln21212d5ln31243s所以2234e2aa2eadsdsrrd22L003、解:1a2ead1a2(ea1)a0习题2-41、(1)解:将曲面向xoy平面投影,得投影区域D:x2+y2≤R2,从而有xyzdSRxydxdyR222R2xy22DxyRdxdyRR2R3DxyD:0x2(2)解:将平面向XOY平面投影,得投影区域,xy,从而有积分0y33x2(42x43y2x34y)1z2z2dxdy(2zx4y)dSxy3Dxy461dxdy4613Dxy:z1xy21)得(2(3)解:由1dSdxdy,D:x2y21xy1:z(x2y2)2(0z1)由得2x2y21dS(1)2dxdy2dxdyx2y2x2y2D:x2y21xyzx2y2dS12321x2y2dxdydr2dr2;3D001xyzx2y2dS(x2y2)2dxdy2d1r2rdr22200Dxy2所以,zx2y2dS(x2y2)dS(x2y2)dS222321zcy,cxcb2、解:将被截得的平面向XOY平面投影,又有已知条件的,azc,zc,设所求的面积为A,则有abxyAdS1(c)2(c)2dxdy12a2b2a2c2c2b2abDxy:2y24,且z2x,z2y,曲面向XOY平面投影,得投影区域,Dxxy3、解:将xy设所求的面积为A,则有AdS1(2x)2(2y)2dxdyDxy2163(17)2114r2rdr2d004、解:以圆环的中心为坐标原点建立坐标系,则容易知道圆环薄片的面密度为:1(x,y),当x2y24时,设薄片的质量为M,则有x2y211rdr842rM22dxdy4d22xy205、(x,y)k(x2y2),而(,),k,k20aaa222200a22M2(x2y)ds2dx(xy2)dy4aaa0223a20a20s00习题2-513x(x,y)dxyd(xx3ydy)dx0x2DD()|111、解:1xx26868480122y(x,y)dxyd(xx2y2dy)dx0x2DD()|111xx6936954012(x,y)dxyd(xx2ydy)dx0x2DD()|111xx5725735011x35,y,重心(,).353535481541485448543535(x,y)x2y2。2、解:设P(x,y)为三角形上一点,则容易知道此点的密度为x(x,y)dx(x2(axx(x2y2)dy)dxay2)d00DD(4x5ax43a2xa3x2)|aa515236150y(x,y)dy(x2y2)d(ayy(x2y2)dx)dya00DD(4y5ay43)|a0a2ya3y2a51523615(x,y)d(x2y2)d((x2y2)dy)dxaax00DD4x2ax3a2x2a3xa44()|a01232362a2a(,):55重心3、解:(1)由对称性知道重心一定在z轴上。1zdz)dxdy1[1(x2y2)]dxdyzdvzdv(x2y22DDxyxy11((1))rrdrd1)|1r2r42(d222224400003而圆锥的体积为:V。所以重心为:(0,0,)。34(2)容易知道此几何体是两个同心半球之间的部分,且重心一定在z轴上。而dvdvdd2Asind200a2[(cos)|2](|A)2(A3a3)0333azdvAcossinddd2zdv200a2(1sin2|2)(|A)(A4a4)42440a3(A4a4)8(A3a3)(0,0,重心:)。4、解:以圆柱下底

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论