版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二重积分的概念与性质演示文稿现在是1页\一共有46页\编辑于星期日(优选)二重积分的概念与性质现在是2页\一共有46页\编辑于星期日
重积分是定积分的推广和发展.其同定积分一样也是某种确定和式的极限,其基本思想是四步曲:分割、取近似、求和、取极限.
定积分的被积函数是一元函数,其积分区域是一个确定区间.
而二重、三重积分的被积函数是二元、三元函数,其积分域是一个平面有界闭区域和空间有界闭区域.重积分有其广泛的应用.序言现在是3页\一共有46页\编辑于星期日问题的提出二重积分的概念二重积分的性质小结思考题作业doubleintegral第一节二重积分的概念
与性质第九章重积分现在是4页\一共有46页\编辑于星期日一、问题的提出定积分中会求平行截面面积为已知的一般立体的体积如何求先从曲顶柱体的体积开始.而曲顶柱体的体积的计算问题,一般立体的体积可分成一些比较简单的回想立体的体积、旋转体的体积.曲顶柱体的体积.二重积分的一个模型.可作为二重积分的概念与性质现在是5页\一共有46页\编辑于星期日曲顶柱体体积=特点1.曲顶柱体的体积D困难曲顶柱体以xOy面上的闭区域D为底,D的边界曲线为准线而母线平行于z轴的柱面,侧面以顶是曲面且在D上连续).曲顶顶是曲的二重积分的概念与性质现在是6页\一共有46页\编辑于星期日柱体体积=
特点分析曲边梯形面积是如何求以直代曲、如何创造条件使
解决问题的思路、步骤与回忆思想是分割、平顶平曲这对矛盾互相转化与以不变代变.曲边梯形面积的求法类似取近似、求和、取极限.二重积分的概念与性质底面积×高现在是7页\一共有46页\编辑于星期日步骤如下用若干个小平顶柱体体积之和先任意分割曲顶柱体的底,曲顶柱体的体积并任取小区域,近似表示曲顶柱体的体积,二重积分的概念与性质现在是8页\一共有46页\编辑于星期日(1)
分割相应地此曲顶柱体分为n个小曲顶柱体.(2)
取近似第i个小曲顶柱体的体积的近似式(用表示第i个子域的面积).将域D任意分为n个子域在每个子域内任取一点二重积分的概念与性质现在是9页\一共有46页\编辑于星期日(3)求和即得曲顶柱体体积的近似值:(4)
取极限λ)趋于零,求n个小平顶柱体体积之和令n个子域的直径中的最大值(记作上述和式的极限即为曲顶柱体体积二重积分的概念与性质现在是10页\一共有46页\编辑于星期日2.非均匀平面薄片的质量(1)将薄片分割成n个小块,看作均匀薄片.(2)(3)(4)近似任取小块设有一平面薄片,求平面薄片的质量M.二重积分的概念与性质现在是11页\一共有46页\编辑于星期日也表示它的面积,二、二重积分的概念1.二重积分的定义定义作乘积
并作和
①②③二重积分的概念与性质现在是12页\一共有46页\编辑于星期日积分区域积分和被积函数积分变量被积表达式面积元素这和式则称此零时,如果当各小闭区域的直径中的最大值趋近于的极限存在,极限为函数二重积分,记为即④二重积分的概念与性质现在是13页\一共有46页\编辑于星期日曲顶柱体体积它的面密度曲顶即在底D上的二重积分,平面薄片D的质量即二重积分的概念与性质在薄片D上的二重积分,现在是14页\一共有46页\编辑于星期日
2.在直角坐标系下用平行于坐标轴的直线网来划分区域D,二重积分可写为注定积分中1.重积分与定积分的区别:重积分中可正可负.则面积元素为二重积分的概念与性质Dyxddd=s现在是15页\一共有46页\编辑于星期日(A)最大小区间长;(B)小区域最大面积;(C)小区域直径;(D)最大小区域直径.D选择题二重积分的概念与性质现在是16页\一共有46页\编辑于星期日2.二重积分的存在定理设f(x,y)是有界闭区域D上的连续函数存在.连续函数一定可积注今后的讨论中,积分区域内总是连续的.或是分片连续函数时,则都假定被积函数在相应的二重积分的概念与性质现在是17页\一共有46页\编辑于星期日(2)3.二重积分的几何意义(3)
(1)在D上的二重积分就等于二重积分是二重积分是而在其它的部分区域上是负的.这些部分区域上的柱体体积的代数和.那末,柱体体积的负值;柱体体积;在D上的若干部分区域上是正的,二重积分的概念与性质现在是18页\一共有46页\编辑于星期日例设D为圆域二重积分=解
上述积分等于由二重积分的几何意义可知,是上半球面上半球体的体积:二重积分的概念与性质RD现在是19页\一共有46页\编辑于星期日性质1为常数,则(二重积分与定积分有类似的性质)二重积分的概念与性质三、二重积分的性质根据二重积分的几何意义,确定积分值练习现在是20页\一共有46页\编辑于星期日以1为高的性质2将区域D分为两个子域性质3若为D的面积oxyD1D2
注既可看成是以D为底,柱体体积.
对积分区域的可加性质.D1与D2除分界线外无公共点.D又可看成是D的面积.二重积分的概念与性质现在是21页\一共有46页\编辑于星期日二重积分的概念与性质在有界闭区域D1上可积,且则必有现在是22页\一共有46页\编辑于星期日特殊地性质4(比较性质)设则二重积分的概念与性质例的值=().(A)为正(B)为负(C)等于0(D)不能确定为负B现在是23页\一共有46页\编辑于星期日选择题
比较(D)无法比较.oxy
1••1•2C(2,1)•性质4(比较性质)的大小,则()二重积分的概念与性质现在是24页\一共有46页\编辑于星期日解例判断的正负号.故于是又当二重积分的概念与性质现在是25页\一共有46页\编辑于星期日几何意义以m为高和以M为高的两个证再用性质1和性质3,
性质5(估值性质)则σ为D的面积,则曲顶柱体的体积介于以D为底,平顶柱体体积之间.证毕.则二重积分的概念与性质现在是26页\一共有46页\编辑于星期日解估值性质区域D的面积在D上例不作计算,二重积分的概念与性质现在是27页\一共有46页\编辑于星期日性质6(二重积分中值定理)体积等于显然几何意义证D上连续,σ为D的面积,则在D上至少存在一点使得则曲顶柱体以D为底为高的平顶柱体体积.将性质5中不等式各除以二重积分的概念与性质有现在是28页\一共有46页\编辑于星期日的最大值M与最小值m之间的.由闭区域上连续函数的介值定理.两端各乘以点的值证毕.即是说,确定的数值是介于函数在D上至少存在一点使得函数在该与这个确定的数值相等,即二重积分的概念与性质现在是29页\一共有46页\编辑于星期日选择题(A)(B)(C)(D)提示:B是有界闭区域D:上的连续函数,不存在.利用积分中值定理.二重积分的概念与性质现在是30页\一共有46页\编辑于星期日利用积分中值定理,解即得:由函数的连续性知,显然,其中点是圆域内的一点.二重积分的概念与性质现在是31页\一共有46页\编辑于星期日
补充在分析问题和算题时常用的设区域D关于x轴对称,如果函数f(x,y)关于坐标y为偶函数.oxyD1性质7则D1为D在第一象限中的部分,对称性质二重积分的概念与性质坐标y为奇函数则设区域D关于x轴对称,如果函数f(x,y)关于现在是32页\一共有46页\编辑于星期日设f(x,y)关于y为偶函数,D1oxy
证则••得二重积分的概念与性质轴的分为许多对称于将域xD,子域内取一中的子域在iDsD1轴的子域与其对称于点xyxii),(,isD也记成).,(iiyx-取一点现在是33页\一共有46页\编辑于星期日坐标y为奇函数自证!则设区域D关于x轴对称,如果函数f(x,y)关于二重积分的概念与性质现在是34页\一共有46页\编辑于星期日这个性质的几何意义如图:OxyzOxyz区域D关于x轴对称f(x,y)关于坐标y为偶函数区域D关于x轴对称f(x,y)关于坐标y为奇函数二重积分的概念与性质现在是35页\一共有46页\编辑于星期日如果函数f(x,y)关于坐标x为奇函数oxyD1如果函数f(x,y)关于坐标x则为偶函数则类似地,设区域D关于y轴对称,且D1为D在第一象限中的部分,二重积分的概念与性质现在是36页\一共有46页\编辑于星期日设D为圆域(如图)00D1为上半圆域D2为右半圆域二重积分的概念与性质现在是37页\一共有46页\编辑于星期日
解由性质得
例二重积分的概念与性质}11,11),{(££-££-=yxyxD其中现在是38页\一共有46页\编辑于星期日为顶点的三角形区域,(A)(B)(C)(D)0.A1991年研究生考题,选择,3分D1是D在第一象限的部分,练习二重积分的概念与性质现在是39页\一共有46页\编辑于星期日D1D2D3D4记I=则I=I1+
I2,其中I1=I2=而I1=D1与D2关于y轴对称D3与D4关于x轴对称xy关于x和关于y都是奇函数二重积分的概念与性质现在是40页\一共有46页\编辑于星期日而I2=是关于x的偶函数,关于y的奇函数.
所以二重积分的概念与性质D1D2D3D4现在是41页\一共有46页\编辑于星期日
今后在计算重积分利用对称性简化计算时,
注意被积函数的奇偶性.
积分区域的对称性,要特别注意考虑两方面:二重积分的概念与性质现在是42页\一共有46页\编辑于星期日
思考当f为关于x且关于y的偶函数时:当f为关于x或关于y的奇函数时:04Di是区域D位于第i(i=1,2,3,4)象限的区域设区域关于x轴、y轴均对称,函数f(x,y)在D上可积,则二重积分的概念与性质现在是43页\一共有46页\编辑于星期日若D为此式的几何意义是:中心在原点的上半球的体积等于它在第一卦限内的体积的4倍.0D1为x≥0,y≥0,则二重积分的概念与性质现在是44页\一共有46页\编辑于星期日二重积分的定义二重积分的性质二重积分的几何意义(曲顶
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度煤矿安全监控系统安装工程专业承包合同2篇
- 2024年度城市更新项目投资与合作协议2篇
- 2024版股权购买合同2篇
- 2024年度国际货物买卖监理合同2篇
- 旧房拆除合同书样本
- 五年级圆课件
- 基于物联网技术的智能家居控制系统开发合同(04版)
- 企业担保合同范本
- 桂林山水课件模板
- 三年级小古文课件
- 公司登记备案申请书备案填写样表
- 内蒙古自治区业主委员会章程
- 5贵州省中小学教学仪器配备标准.xls
- 常用汉字汉语拼音表
- 国家标准硬度转换表参考模板
- 道教符咒法术与易学关系的哲理探要
- 清洁剂种类、用途和使用注意事项
- 药剂科药品质量安全检查表
- 《传感器与检测技术》全套教案
- 5-精益六西格玛统计工具介绍-假设检验
- 湖北省高等教育自学考试毕业生思想品德鉴定表
评论
0/150
提交评论