第14讲 圆(压轴题组)【有答案】-【2022年】中考数学大复习(知识点·易错点·题型训练·压轴题组)_第1页
第14讲 圆(压轴题组)【有答案】-【2022年】中考数学大复习(知识点·易错点·题型训练·压轴题组)_第2页
第14讲 圆(压轴题组)【有答案】-【2022年】中考数学大复习(知识点·易错点·题型训练·压轴题组)_第3页
第14讲 圆(压轴题组)【有答案】-【2022年】中考数学大复习(知识点·易错点·题型训练·压轴题组)_第4页
第14讲 圆(压轴题组)【有答案】-【2022年】中考数学大复习(知识点·易错点·题型训练·压轴题组)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第14讲圆(压轴题组)1.(2021·浙江省宁波市实验学校九年级期中)给出定义:有两个内角分别是它们对角的两倍的四边形叫做倍对角四边形.(1)如图1,在倍对角四边形ABCD中,∠D=2∠B,∠A=2∠C,求∠B与∠C的度数之和;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO,∠OBA的平分线交OA于点E,连结DE并延长交AC于点F,∠AFE=2∠EAF.求证:四边形DBCF是倍对角四边形;(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G.当4DH=3BG时,求△BGH与△ABC的面积之比.【答案】(1)120°;(2)见解析;(3)【详解】(1)解:在倍对角四边形ABCD中,∠D=2∠B,∠A=2∠C,∵∠A+∠B+∠C+∠D=360°,∴3∠B+∠3∠C=360°,∴∠B+∠C=120°,∴∠B与∠C的度数之和为120°;(2)证明:在△BED与△BEO中,,∴△BED≌△BEO(SAS),∴∠BDE=∠BEO,∵∠BOE=2∠BCF,∴∠BDE=2∠BCF连接OC,设∠EAF=α,则∠AFE=2α,∴∠EFC=180°﹣∠AFE=180°﹣2α,∵OA=OC,∴∠OAC=∠OCA=α,∴∠AOC=180°﹣∠OAC﹣∠OCA=180°﹣2α,∴∠EFC=∠AOC=2∠ABC,∴四边形DBCF是倍对角四边形;(3)解:过点O作OM⊥BC于M,∵四边形DBCF是倍对角四边形,∴∠ABC+∠ACB=120°,∴∠BAC=60°,∴∠BOC=2∠BAC=120°,∵OB=OC,∴∠OBC=∠OCB=30°,∴BC=2BM=BO=BD,∵DG⊥OB,∴∠HGB=∠BAC=60°,∵∠DBG=∠CBA,∴△DBG∽△CBA,∴=,∵4DH=3BG,BG=2HG,∴DG=GH,∴=,∵∴=.2.(2021·黑龙江·哈尔滨德强学校九年级期中)已知,四边形ABCD为⊙O的内接四边形,BD、AC相交于点E,.(1)如图1,求证:;(2)如图2,过点C作于点F,交BD于点G,当时,求证:;(3)如图3,在(2)的条件下,连接AO并延长交BD于点H,当,时,求OH的长.【答案】

(1)证明见详解;(2)见详解;(3)OH=.【详解】(1)证明:∵,∴∠ACB=∠ABC,∵四边形ABCD为圆内接四边形,∴∠ADC+∠ABC=180°,∵∠ADB=∠ACB,∴∠ADB=∠ABC,∵∠ADC=∠CDB+∠ADB,∴∠ADC+∠ABC=∠CDB+∠ADB+∠ADB=∠CDB+2∠ADB=180°,∴;(2)证明:过点C作CN⊥DB,交BD于N,交于M,∵∴∠MCB=180°-∠CNB-∠DBC=45°,∴∠MCB=∠DBC=45°,∴MB∵AB=AC,∴∴AD∴∠ACM=∠DBA∵∠CNG=∠GFB,∠NGC=∠FGB,∴∠NCG=180°-∠CNG-∠NGC=180°-∠GFB-∠FGB=∠GBF=∠ECN,在△CEN和△CGN中∴△CEN≌△CGN(ASA),∴CE=CG;

(3)解:过C作CP//AH交BD于P,连结AP,连结OE,连结CH,延长AO交BC于Q,过O作OM⊥AB于M,∵E为AC中点,OE为弦心距,∴OE⊥AC,∵AB=AC,∴OE=OM,∴AQ平分∠CAB,∴AQ⊥BC,∵CQ=BQ,点H在AQ上,∴CH=BH,∵∠DBC=45°,∴∠HCB=∠DBC=45°,∴∠CHB=180°-∠HCB-∠DBC=90°,∴CH⊥BD,∵CE=CG,∴EH=GH=3,∵CP//AH,∴∠PCE=∠HAE,在△PCE和△HAE中,,∴△PCE≌△HAE(AAS),∴PE=HE=3,∵PE=HE,CE=AE,∴四边形PAHC为平行四边形,∴AP=CH,∠APH=∠CHP=90°,∵∠HBQ=45°,∠HQB=90°,∴∠QHB=180°-∠HBQ-∠HQB=180°-90°-45°=45°,∴∠PHA=∠QHB=45°,∵∠APH=90°,∴∠PAH=90°-∠PHA=90°-45°=45°,∴∠PAH=∠PHA=45°,∴△APH为等腰直角三角形,∵PH=PE+EH=6,∴AP=PH=6,在Rt△PAH中,AH=∵HB=CH=6,∠CHB=90°,BC=,∴CQ=BQ=,在Rt△EHC中EC=,∴AC=2CE=,AE=CE=,在Rt△ACQ中AQ=,∵∠EAO=∠QAC,∠AEO=∠AQC=90°∴△AEO∽△AQC,∴,即,解得AO=,OH=AH-AO=-.

3.(2021·江苏·连云港市新海实验中学九年级期中)如图,四边形ABCD是圆O的内接四边形,AC、BD相交于点E.(1)如图①,若CD∥AB,求证:AC=BD;(2)如图②,若AD=6,BC=8,∠AEB=90°,求圆O的半径;(3)如图③,若AD=4,BC=6,∠AED=60°,求圆O的半径;【答案】(1)见解析;(2)5;(3)【详解】解:(1)∵,∴∠ACD=∠CAB,∵∠ACD=∠ABD,∴∠ABD=∠BAC,又∵∠ADB=∠BCA,AB=BA,∴△ADB≌△BCA(AAS),∴AC=BD;(2)如图所示,连接AO并延长与圆O交于F,连接DF,∴∠ADF=90°,∵∠AEB=90°,∴∠AED=∠BEC=∠AEB=90°,又∵∠DAE=∠CBE,∴△DAE∽△CBE,∴,∵∠AEB=∠ADF=90°,∠ABD=∠AFD,∴△ABE∽△AFD,∴即,∴,∴,∴圆O的半径为5;(3)如图所示,过点B作交圆O于G,连接DO并延长与圆O交于F,连接GF,连接GA,过点D作DH⊥GA交GA延长线于H,∵,∴∠DBG=∠AED=60°,∠CAB=∠ABG,∴AG=BC=6,又∵∠GFD=∠DBG,∴∠GFD=60°,∵DF是圆的直径,∴∠DGF=90°,∴∠GDF=30°,∴DF=2GF,∴,∵四边形AGFD是圆内接四边形,∴∠DAG+∠DFG=180°,又∵∠DAG+∠DAH=180°,∴∠DAH=∠DFG=60°,∵∠DHA=90°,∴∠ADH=30°,∴,∴,,∴,∴,∴,∴圆O的半径为.4.如图,已知抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B左边),与y轴交于点C,⊙M是△ABC的外接圆.若抛物线的顶点D的坐标为(1,4).(1)求抛物线的解析式,及A、B、C三点的坐标;(2)求⊙M的半径和圆心M的坐标;(3)如图2,在x轴上有点P(7,0),试在直线BC上找点Q,使B、Q、P三点构成的三角形与△ABC相似.若存在,请直接写出点坐标;若不存在,请说明理由.【答案】(1),;(2)⊙M的半径为,圆心的坐标为;(3)存在,或.【详解】解:(1)∵抛物线的顶点的坐标为,∴,解得,则抛物线的解析式为,令,则,解得或,令,则,故;(2)如图1,连接,,中点的坐标为,∵三角形外心为三边中垂线交点,∴设,且,,解得,,,故⊙M的半径为,圆心的坐标为;(3)由(1)知,,,设直线的函数解析式为,将点代入得:,解得,则直线的函数解析式为,设点的坐标为,则,要使三点构成的三角形与△ABC相似,则△ACB∽△PQB或△ACB∽△QPB,此时,,①当△ACB∽△PQB时,则,即,解得,经检验,是所列方程的解,则此时点的坐标为;②当△ACB∽△QPB时,则,即,解得,经检验,是所列方程的解,则此时点的坐标为;综上,点的坐标为或.5.(2021·江苏·常州市北郊高级中学九年级期中)在图1至图3中,⊙O的直径,切⊙O于点,,连接交⊙O于点,连接,是线段上一点,连接.(1)如图1,当点,的距离最小时,求的长;(2)如图2,若射线过圆心,交⊙O于点,,求的值;(3)如图3,作于点,连接,直接写出的最小值.【答案】(1);(2);(3)【详解】(1)如图,⊙O的直径,切⊙O于点,,在Rt△中,是直径根据点到直线的距离垂线段最短,即可知当时,点,的距离最小,;(2)如图,连接,是⊙O的直径,,,解得(负值舍去),又,即(3)如图,以为直径作⊙G,则为的中点,Rt△BDC中点在⊙G上,,当三点共线时,最小此时,在中,.的最小值为.6.(2021·江苏溧阳·九年级期中)概念认识:平面内,M为图形T上任意一点,N为⊙O上任意一点,将M、N两点间距离的最小值称为图形T到⊙O的“最近距离”,记作d(T-⊙O).例:如图1,在直线l上有A、C、O三点,以AC为对角线作正方形ABCD以点O为圆心作圆,与l交于E、F两点,若将正方形ABCD记为图形T,则C、E两点间的距离称为图形T到⊙的“最近距离”.数学理解:(1)在平面内有A、B两点,以点A为圆心,5为半径作⊙A,将点B记为图形T,若d(T-⊙A)=2,则AB=________.(2)如图2,在平面直角坐标系中,以O(0,0)为圆心,半径为2作圆.①将点C(4,3)记为图形T,则d(T-⊙0)=_________.②将一次函数y=kx+2的图记为图形T,若d(T-⊙)>0,求k的取值范围.推广运用:(3)在平面直角坐标系中,P的坐标为(t,0),⊙P的半径为2,D、E两点的坐标分别为(5,5)、(5,-5),将△DOE记为图形T,若d(T-P)=1,则t=___________.【答案】(1);(2)①3;②;(3)【详解】解:(1)如图1中,∵d(T-⊙A)=2,∴CB=CB′=2,∵AC=5,∴AB′=3,AB=7.故答案为:3或7.(2)①如图2中,连接OC交⊙O于E.∵C(4,3),∴OC=,∵OE=2,∴EC=3,∴d(T-⊙O)=3.故答案为:3.②如图,设直线y=kx+2与⊙O相切于E,K.连接OK,OE.∵OE⊥DE,OK⊥DK,OD=2√2,OE=OK=2,∴DK=,DE=,∴DE=OE=DK=OK,∴四边形DEOK是菱形,∵∠DKO=∠DEO=90°,∴四边形DEOK是正方形,∴∠ODE=∠ODK=45°,∴直线DE的解析式为y=-x+2,直线DK的解析式为y=x+2,∵d(T-⊙O)>0,∴观察图象可知满足条件的k的值为-1<k<1且k≠0.(3)∵D、E两点的坐标分别为(5,5)、(5,-5),设DE与x轴相交于点N,∴ON=5,∵P的坐标为(t,0),⊙P的半径为2,且d(T-P)=1,∴点P不可能在△DOE内部.则点P可分别在△DOE左侧和右侧两种情况:①如图3-1中,当点P在△DOE左侧时,⊙P交x轴于M,∴PM=2,∵d(T-⊙P)=1,∴OP=3,∴t=-3.②如图3-2中,当点P在△DOE的右侧时,∵d(T-⊙P)=1,ON=5,即MN=1,∴OM=6,∵PM=2,∴OP=6,∴t=8.综上所述,满足条件的t的值为-3或8.7.(2021·湖北·宜昌市第三中学九年级期中)小明学习了垂径定理,做了下面的探究,请根据题目要求帮小明完成探究.(1)更换定理的题设和结论可以得到许多真命题.如图1,在⊙O中,是劣弧的中点,直线于点,则.请证明此结论;(2)从圆上任意一点出发的两条弦所组成的折线,成为该圆的一条折弦.如图2,,组成⊙O的一条折弦.是劣弧的中点,直线于点,则.可以通过延长、相交于点,再连接证明结论成立.请写出证明过程;(3)如图3,,组成⊙O的一条折弦,若是优弧的中点,直线于点,则,与之间存在怎样的数量关系?请写出证明过程.【答案】(1)见解析;(2)见解析;(3),理由见解析【详解】证明:(1)如图1,连接,,是劣弧的中点,,,,,,,为等腰三角形,,;(2)如图2,延长、相交于点,再连接,是圆内接四边形,,是劣弧的中点,,,为等腰三角形,,,,,(3).连接,,,、相交于点,弧弧,,,,,,,,,,,,,,.8.(2021·江苏省锡山高级中学实验学校九年级期中)对于⊙C与⊙C上一点A,若平面内的点P满足:射线AP与⊙C交于点Q,且PA=2QA,则称点P为点A关于⊙C的“倍距点”.已知平面直角坐标系xOy中,点A的坐标是(-3,0).(1)如图1,点O为坐标原点,⊙O的半径是3,点P是点A关于⊙O的“倍距点”.①若点P在x轴正半轴上,则点P的坐标是;②若点P在第一象限,且∠PAO=30°,求点P的坐标;(2)设点M(m,0),以点M为圆心,MA长为半径作⊙M,一次函数y=x+的图象分别与x轴、y轴交于D、E,若一次函数y=x+的图象上存在唯一一点P,使点P是点A关于⊙M的“倍距点”,请你直接写出m的值.【答案】(1)①(9,0);②点P(6,);(2)m=.【详解】解:(1)①∵点P在x轴正半轴上,AP交⊙O于Q,∴AQ为⊙O的直径,AQ=2OA=6,∴AP=2AQ=12,∴OP=AP-OA=12-3=9,∴点P(9,0),故答案为(9,0);②AP交⊙O于Q,设⊙O于x轴交于B,连结QB,过P作PC⊥x轴于C,∵AB=6,∠PAO=30°,∴AQ=ABcos30°=6×,∴AP=2AQ=,∴PC=AP·sin30°=,AC=AP·cos30°=,∴OC=AC-AO=9-3=6,∴点P(6,);(2)过点M作MG⊥AQ于G,一次函数y=x+的图象分别与x轴、y轴交于D、E,当x=0时,y=,点E(0,),当y=0时,x+=0,解得x=-6,点D(-6,0),∵tan∠EDO=,∴∠EDO=30°,当AP⊥DE时,AP长唯一,AP=AD×sin30°=[-3-(-6)],∵AP=2AQ,∴AQ=,∵AQ为弦,AG⊥AQ,∴AG=QG=,∵AP⊥DE,MG⊥AP,∴MG∥DE,∴∠GMA=∠EDO=30°,∴MA=2AG=,点M在点A左侧AP与⊙M有交点,∴-3-m=,∴m=.9.(2021·浙江·宁波东海实验学校九年级期中)(提出问题)如图1,直径AB垂直弦CD于点E,AB=10,CD=8,点P是CD延长线上异于点D的一个动点,连接AP交⊙O于点Q,连接CQ交AB于点F,则点F的位置随着点P位置的改变而改变.(特殊位置探究)(1)当DP=2时,求tan∠P和线段AQ的长;(一般规律探究)(2)如图2,连接AC,DQ,在点P运动过程中,设DP=x,y.①求证:∠ACQ=∠CPA;②求y与x之间的函数关系式;(解决问题)(3)当OF=1时,求△ACQ和△CDQ的面积之比.(直接写出答案)【答案】(1)tan∠P,AQ=8;(2)①答案见解析,②y;(3)或.【详解】解:(1)连接OD,∵直径AB⊥CD,AB=10,CD=8,∴DE=CD=4,OD=,∴∴AE=OA+OE=5+3=8,∵DP=2,∴PE=PD+DE=2+4=6,∴tan∠P=,连接BQ,则∠AQB=90°,∵在RT△ABQ中,AQ=ABcos∠BAQ==10×=8.(2)①证明:连接BQ,AC,∵,∴∠ACQ=∠ABQ,∵AB为直径,∴∠QAB+∠ABQ=90°,∴AB⊥CP,∴∠P+∠BAP=90°,∴∠ACQ=∠CPA.②连接BC,过点A作AC的垂线交CQ的延长线于点N,∵AB为直径,∴∠ACB=∠NAC=90°,∴BC∥AN,∴△FCB∽△FNA,∴,∵AB⊥CD,AE=8,CE=4,∴,,tan∠P=,∵DP=x,∴y=(3)当OF=1时,F在O的右边时,AF=6;当F在O的左边时,AF=4.当AF=6时,则BF=4,∴y=,∴解得x=.经检验:是原方程的根且符合题意.如图,连接QD,∵四边形ACDQ为⊙O的内接四边形,∵∠ACQ=∠P,∠CAQ=∠PDQ,∴△PDQ∽△CAQ.∴∴∴当AF=4时,y=,解得x=20.同理可得∴当OF=1时,△CDQ与△ACQ的面积之比为或.10.在一次数学探究活动中,李老师设计了一份活动单:已知线段BC=2,使用作图工具作∠BAC=30°,尝试操作后思考:(1)这样的点A唯一吗?(2)点A的位置有什么特征?你有什么感悟?“追梦”学习小组通过操作、观察、讨论后汇报:点A的位置不唯一,它在以BC为弦的圆弧上(点B、C除外),….小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.①该弧所在圆的半径长为_______;②△ABC面积的最大值为_______;(2)经过比对发现,小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论