投影与视图技巧及练习题附答案_第1页
投影与视图技巧及练习题附答案_第2页
投影与视图技巧及练习题附答案_第3页
投影与视图技巧及练习题附答案_第4页
投影与视图技巧及练习题附答案_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

投影与视图技巧及练习题附答案一、选择题1.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A.小明的影子比小强的影子长 B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长 D.两人的影子长度不确定【答案】D【解析】【分析】在同一路灯下由于位置不确定,根据中心投影的特点判断得出答案即可.【详解】在同一路灯下由于位置不同,影长也不同,所以无法判断谁的影子长.故选D.【点睛】本题综合考查了平行投影和中心投影的特点和规律.平行投影的特点是:在同一时刻,不同物体的物高和影长成比例.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.2.如图是某几何体的三视图,该几何体是()A.三棱柱 B.三棱锥 C.长方体 D.正方体【答案】A【解析】【分析】根据几何体的三视图,对各个选项进行分析,用排除法得到答案.【详解】根据俯视图是三角形,长方体和正方体以及三棱锥不符合要求,B、C、D错误,根据几何体的三视图,三棱柱符合要求,故选A.【点睛】本题考查的是几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.3.某几何体的三视图如图所示,则该几何体的体积为()A.3 B.3 C.3 D.6【答案】C【解析】【分析】依据三视图中的数据,即可得到该三棱柱的底面积以及高,进而得出该几何体的体积.【详解】解:由图可得,该三棱柱的底面积为×2×=,高为3,∴该几何体的体积为×3=3,故选:C.【点睛】本题主要考查了由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.4.如图是一个由5个完全相同的小正方体组成的几何图形,则它的主视图为()A. B. C. D.【答案】A【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看第一层是三个小正方形,第二层右边一个小正方形,故选A.【点睛】本题考查了简单组合体的三视图,解题的关键是掌握三视图的原理.5.一个长方体的三视图如图,若其俯视图为正方形,则这个长方体的表面积为()A.48 B.57 C.66 D.【答案】C【解析】【分析】先根据三视图画出长方体,再根据三视图得出,然后根据正方形的性质求出的长,最后根据长方体的表面积公式即可得.【详解】由题意,画出长方体如图所示:由三视图可知,,四边形ACBD是正方形则这个长方体的表面积为故选:C.【点睛】本题考查了正方形的性质、三视图的定义、长方体的表面积公式等知识点,掌握理解三视图的相关概念是解题关键.6.图2是图1中长方体的三视图,若用表示面积,,,则()A. B. C. D.【答案】A【解析】【分析】直接利用已知视图的边长结合其面积得出另一边长,即可得出俯视图的边长进而得出答案.【详解】解:∵S主,S左,∴主视图的长,左视图的长,则俯视图的两边长分别为:、,S俯,故选:A.【点睛】此题主要考查了已知三视图求边长,正确得出俯视图的边长是解题关键.7.一个几何体的三视图如图所示,则这个几何体的表面积是()A. B. C. D.【答案】D【解析】【分析】由题意推知几何体为长方体,长、宽、高分别为、、,根据长方体的表面积公式即可求其表面积.【详解】由题意推知几何体是长方体,长、宽、高分别、、,所以其面积为:,故选D.【点睛】本题考查了由三视图还原几何体、长方体的表面积,熟练掌握常见几何体的三视图是解题的关键.8.如图是某几何体的三视图及相关数据,则下面判断正确的是()A.a>c B.b>c C.a2+4b2=c2 D.a2+b2=c2【答案】D【解析】【分析】由三视图可知该几何体是圆锥,圆锥的高是a,母线长是c,底面圆的半径是b,刚好组成一个以c为斜边的直角三角形,由勾股定理,可得解.【详解】由题意可知该几何体是圆锥,根据勾股定理得,a2+b2=c2故选:D.【点睛】本题考查三视图和勾股定理,关键是由三视图判断出几何体是圆锥.9.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2π B.16+4π C.16+8π D.16+12π【答案】D【解析】【分析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.【详解】该几何体的表面积为2וπ•22+4×4+×2π•2×4=12π+16,故选D.【点睛】本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.10.如图所示的几何体的俯视图为()A. B. C. D.【答案】D【解析】【分析】【详解】从上往下看,易得一个正六边形和圆.故选D.11.下面的几何体中,主视图为圆的是()A. B. C. D.【答案】C【解析】试题解析:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.12.如图所示的某零件左视图是()A. B. C. D.【答案】B【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看是一个矩形,其中间含一个圆,如图所示:故选:B.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看到的线画实线.13.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个 B.5个 C.6个 D.7个【答案】B【解析】【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B.【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.【详解】请在此输入详解!【点睛】请在此输入点睛!14.下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是()A. B.C. D.【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念结合各几何体的主视图逐一进行分析即可.【详解】A、主视图是正方形,正方形是轴对称图形,也是中心对称图形,故不符合题意;B、主视图是矩形,矩形是轴对称图形,也是中心对称图形,故不符合题意;C、主视图是等腰三角形,等腰三角形是轴对称图形,不是中心对称图形,故符合题意;D、主视图是圆,圆是轴对称图形,也是中心对称图形,故不符合题意,故选C.【点睛】本题考查了立体图形的主视图,轴对称图形、中心对称图形,熟练掌握相关知识是解题的关键.15.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是().A.主视图的面积为4 B.左视图的面积为4C.俯视图的面积为3 D.三种视图的面积都是4【答案】A【解析】【分析】根据三视图的绘制,首先画出三视图再计算其面积.【详解】解:A.主视图的面积为4,此选项正确;B.左视图的面积为3,此选项错误;C.俯视图的面积为4,此选项错误;D.由以上选项知此选项错误;故选A.【点睛】本题主要考查三视图的画法,关键在于正面方向.16.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()A.8 B.7 C.6 D.5【答案】B【解析】【分析】易得这个几何体共有层,由俯视图可得第一层小正方体的个数,由主视图可得第二层小正方体的最多个数,相加即可.【详解】解:由俯视图易得最底层有个小正方体,第二层最多有个小正方体,那么搭成这个几何体的小正方体最多为个.故选:B【点睛】考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.17.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是A.主视图 B.左视图 C.俯视图 D.主视图和左视图【答案】C【解析】【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.18.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A.60π B.70π C.90π D.160π【答案】B【解析】试题分析:由几何体的三视图得,几何体是高为10,外径为8.内径为6的圆筒,∴该几何体的体积为.故选B.考点:由三视图求体积.19.如图是某几何体得三视图,则这个几何体是()A.球B.圆锥C.圆柱D.三棱体【答案】B【解析】分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于俯视图为圆形可得为球、圆柱、圆锥.主视图和左视图为三角形可得此几何体为圆锥.故选B.20.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是(

)A.从前面看到的形状图的面积为5 B.从左面看到的形状图的面积为3C.从上面看到的形状图的面积为3 D.三种视图的面积都是4【答案】B【解析】A.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论