三角形中位线讲义及自测题(含答案)_第1页
三角形中位线讲义及自测题(含答案)_第2页
三角形中位线讲义及自测题(含答案)_第3页
三角形中位线讲义及自测题(含答案)_第4页
三角形中位线讲义及自测题(含答案)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

三角形中位线讲义及自测题(含答案)三角形中位线一复习引入1)什么叫三角形的中线?2)三角形的中线有几条?二 合作交流,探究新知问题引入:接下来,我们就要来探究一个问题,大家打开课本90页,看练习3,A、B两点被池塘隔开,现在要测量出A、B两点间的距离,但又无法直接去测量,怎么办?连接三角形两边中点的线段叫做三角形的中位线。用例题证明中位线的定理:例:如图已知,在△ABC中,点D,E分别是△ABC的边AB、AC中线,求证:DE∥BC,且DE=1/2BC证明:如图3,延长DE到F,使EF=DE,连结CF.4cm、6cm,则这个三角形的周长是().A.3cmB.26cmC.24cmD.65cm五教学小结①三角形中位线定义:连接三角形两边中点的线段②三角形中位线性质定理:三角形中位线平行于第三边并等于第三边的一半求证:四边形EFHM是平行四边形.三角形的中位线自测题1.连结三角形___________的线段叫做三角形的中位线.2.三角形的中位线______于第三边,并且等于_______.3.一个三角形的中位线有_________条.4.如图△ABC中,D、E分别是AB、AC的中点,则线段CD是△ABC的___,线段DE是△ABC_______5、如图,D、E、F分别是△ABC各边的中点(1)如果EF=4cm,那么BC=__cm如果AB=10cm,那么DF=___cm(2)中线AD与中位线EF的关系是___6.如图1所示,EF是△ABC的中位线,若BC=8cm,则EF=_______cm.(1)(2)(3)(4)7.三角形的三边长分别是3cm,5cm,6cm,则连结三边中点所围成的三角形的周长是_________cm.8.在Rt△ABC中,∠C=90°,AC=5,BC=12,则连结两条直角边中点的线段长为_______.9.若三角形的三条中位线长分别为2cm,3cm,4cm,则原三角形的周长为()A.4.5cmB.18cmC.9cmD.36cm10.如图2所示,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为()A.15mB.25mC.30mD.20m11.已知△ABC的周长为1,连结△ABC的三边中点构成第二个三角形,再连结第二个三角形的三边中点构成第三个三角形,依此类推,第2010个三角形的周长是()、B、C、D、12.如图3所示,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长不能确定13.如图4,在△ABC中,E,D,F分别是AB,BC,CA的中点,AB=6,AC=4,则四边形AEDF的周长是()A.10B.20C.30D.4014.如图所示,□ABCD的对角线AC,BD相交于点O,AE=EB,求证:OE∥BC.15.已知矩形ABCD中,AB=4cm,AD=10cm,点P在边BC上移动,点E、F、G、H分别是AB、AP、DP、DC的中点.求证:EF+GH=5cm;16.如图所示,在△ABC中,点D在BC上且CD=CA,CF平分∠ACB,AE=EB,求证:EF=BD.17.如图所示,已知在□ABCD中,E,F分别是AD,BC的中点,求证:MN∥BC.18.已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.19.如图,点E,F,G,H分别是CD,BC,AB,DA的中点。求证:四边形EFGH是平行四边形。20.已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:四边形DEFG是平行四边形.21.如图5,在四边形中,点是线段上的任意一点(与不重合),分别是的中点.证明四边形是平行四边形;BBGAEFHDC图522如图,在四边形ABCD中,AD=BC,点E,F,G分别是AB,CD,AC的中点。求证:△EFG是等腰三角形。23.如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD于点D,E为BC中点.求DE的长.24.已知:如图,E为□ABCD中DC边的延长线上的一点,且CE=DC,连结AE分别交BC、BD于点F、G,连结AC交BD于O,连结OF.求证:AB=2OF.25.已知:如图,在□ABCD中,E是CD的中点,F是AE的中点,FC与BE交于G.求证:GF=GC.26.已知:如图,在四边形ABCD中,AD=BC,E、F分别是DC、AB边的中点,FE的延长线分别与AD、BC的延长线交于H、G点.求证:∠AHF=∠BGF.答案:1两边中点。2平行,第三边的一半。33。4中线,中位线。58,5;互相平分。64。77。86.5。9B。10 D.11D.12C.13A. 14∵AE=BE

∴E是AB的中点

∵四边形ABCD是平行四边形

∴AO=OC

∴EO是△ABC的中位线

∴OE‖BC15EF是三角形ABP中点,EF=1/2BP,同理GH=1/2CP,EF+GH=1/2(BP+CP)=516∵CD=CA,CF平分∠ACB,CF为公共边∴三角形ACF与三角形DCF全等

∴F为AD边的中点

∵AE=BE

∴E为AB的中点

∴EF为三角形ABD的中位线

∴EF=1/2BD=1/2(bc-ac)=2倒过来即可17△AEM≌△FBM得ME=MB,同理得NE=NC,于是MN是△EBC的中位线。所以MN∥BC。18证明;连接BD,∵E,F,G,H分别是AB,BC,CD,DA的中点

EH平行且等于BD/2,FD平行且等于BD/2

∴EH平行且等于FD

∴四边形EFGH是平行四边形。连接BD∵H为AD中点,G为AB中点∴GH为△ABD中位线∴GH∥BD且EH=1/2BD∵E为CD中点,F为BC中点∴FE为△DCB中位线∴FE∥BD且FG=1/2BD∴HG∥=EF

20∵E、D分别为AB、CD的中点

∴ED//=½BC(中位线性质)

在△BOC中,

∵F、G分别为OB、OC的中点

∴FG//=½BC(中位线性质)

∴FG//=ED

∴四边形DEFG为平行四边形21.∵F,H分别是BC,CE的中点,∴FH‖BE,FH=1/2BE(中位线定理),∵G是BE的中点,∴BG=EG=FH,∴四边形EGFH是平行四边形。22 略。23因为AD平分∠BAC,所以∠BAD=∠FAD。由BD⊥AD于D,得∠ADB=∠ADF=90°还有AD=AD,所以△ADB≌△ADF。所以BD=FD,AF=AB,还有E是BC中点,于是DE是△BCF中位线,于是DE=CF/2,有CF=AC-AF=AC-AB=10-6=4,于是DE=CF/2=4÷2=224证明:∵CE//AB

∴∠E=∠BAF,∠FCE=∠FBA

又∵CE=CD=AB

∴△FCE≌△FBA(ASA)

∴BF=FC

∴F是BC的中点,

∵O是AC的中点

∴OF是△CAB的中位线,

∴AB=2OF25取BE的中点H,连接FH、CH

∵F、G分别是AE、BE的中点

∴FH是△ABE的中位线

∴FH∥ABFH=1/2*AB

∵四边形ABCD是平行四边形

∴CD∥ABCD=AB

∵E是CD的中点

∴CE=1/2*AB

∵CE=1/2*ABFH=1/2*AB26证明:连接AC,取AC的中点M,连接ME、MF

∵M是AC的中点,E是DC的中点

∴ME是△ACD的中位线

∴ME=AD/2,PE∥AH

∴∠MEF=∠AHF(HYPERLINK"/search?word=%E5%90%8C%E4%BD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论