人教版八年级下册数学期中考试试题附答案_第1页
人教版八年级下册数学期中考试试题附答案_第2页
人教版八年级下册数学期中考试试题附答案_第3页
人教版八年级下册数学期中考试试题附答案_第4页
人教版八年级下册数学期中考试试题附答案_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版八年级下册数学期中考试试卷一、单选题1.若在实数范围内有意义,则x的取值范围是()A.x≥ B.x≥- C.x> D.x≠2.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm3.下列计算错误的是()A. B.C. D.=34.如图,点P是平面坐标系中一点,则点P到原点的距离是()A.3 B. C. D.5.若平行四边形中两个内角的度数比为1:2,则其中较小的内角是()A.90° B.60° C.120° D.45°6.-2的倒数是()A.-2 B. C. D.27.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:18.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75° B.60° C.55° D.45°二、填空题9.已知,则x+y=_____.10.若代数式有意义,则a的取值范围为_____.11.“两直线平行,内错角相等”的逆命题是__________.12.小强在操场上向东走80m后,又走了60m,再走100m回到原地.小强在操场上向东走了80m后,又走60m的方向是______________

.13.在平行四边形ABCD中,∠C=∠B+∠D,则∠A=_______,∠D=_________.14.如图,菱形ABCD的边长是2cm,E是AB的中点,且,则菱形ABCD的面积为_________.三、解答题15.计算:(1)2+3--;(2)-÷2+(3-)(1+).16.已知x=-1.求代数式的值.17.在△ABC中,∠C=90°,AC=2.1cm,BC=2.8cm.(1)求△ABC的面积;(2)求斜边AB的长;(3)求高CD的长.18.如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=2求斜边AB的长.19.在三角形ABC中,AB=13,BC=10,BC边上的中线AD=12,求AC20.如图,在菱形ABCD中,∠A与∠B的度数比为1:2,周长是48cm.求:(1)两条对角线的长度;(2)菱形的面积.21.已知菱形的两条对角线的长分别是6和8,求菱形的周长和面积.22.已知:如图,在正方形ABCD中,AE⊥BF,垂足为P,AE与CD交于点E,BF与AD交于点F,求证:AE=BF.参考答案1.A【解析】∵在实数范围内有意义,∴2x-1≥0,∴x≥.故选A.2.B【解析】解:如图,∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=3,∴EC=BC-BE=5-3=2.故选B.3.D【解析】A.;正确;B.,正确;C.,正确;D.,原式错误.故选D.4.A【解析】分析:连接PO,在直角坐标系中,根据点P的坐标是(),可知P的横坐标为,纵坐标为,然后利用勾股定理即可求解.详解:连接PO.∵点P的坐标是(),∴点P到原点的距离==3.故选A.点睛:本题主要考查学生对勾股定理、坐标与图形性质的理解和掌握,解答此题的关键是明确点P的横坐标为,纵坐标为.5.B【解析】如图所示:∵四边形ABCD是平行四边形,

∴AB∥CD,

∴∠B+∠C=180°,

∵∠B:∠C=1:2,

∴∠B=×180°=60°,

故选B.6.B【解析】根据倒数的定义求解.【详解】-2的倒数是-故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握7.C【解析】菱形的性质;含30度角的直角三角形的性质.【详解】如图所示,根据已知可得到菱形的边长为2cm,从而可得到高所对的角为30°,相邻的角为150°,则该菱形两邻角度数比为5:1,故选C.8.B【解析】由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和定理得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.【详解】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.9.【解析】根据非负数的非负性质可得,可解得,然后代入即可求出.【详解】解:由题意可得:,解得,所以.【点睛】本题主要考查非负数的非负性质和解二元一次方程组的方法,解决本题的关键是要熟练掌握非负数的非负性和解二元一次方程组.10.x≤2【解析】根式有意义,被开放式要大于等于零.【详解】解:∵有意义,∴2-x0,解得:x≤2,故填x≤2.【点睛】本题考查了根式有意义的条件,属于简单题,熟悉二次根式有意义的条件是解题关键.11.内错角相等,两直线平行【解析】解:“两直线平行,内错角相等”的条件是:两条平行线被第三条值线索截,结论是:内错角相等.将条件和结论互换得逆命题为:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,可简说成“内错角相等,两直线平行”.12.向北或向南;【解析】【分析】根据题意作出图形,利用勾股定理的逆定理判定直角三角形即可确定答案.【详解】解:解:如图,AB=80米,BC=BD=60米,AC=AD=100米,

根据602+802=1002得:∠ABC=∠ABD=90°,

∴小强在操场上向东走了80m后,又走60m的方向是向北或向南,

故答案为:向北或向南.【点睛】本题考查了勾股定理的应用,难度中等,解题的关键是根据题意作出图形.13.120°,60°.【解析】根据平行四边形的性质:对角相等且邻角互补,通过计算即可得出答案.∵四边形ABCD是平行四边形,∴∠B=∠D,∠A=∠C,3∠B+∠C=180°∴3∠B=180°∠B=60°∴∠D=60°∴∠A=∠C=60°+60°=120°故答案为(1).120°(2).60°14.【解析】在直角三角形AED中,AD=2,AE=1,根据勾股定理可得:DE=,所以菱形ABCD的面积=,故答案为.15.(1)2(2)【解析】【详解】分析:(1)根据二次根式的加减法可以解答本题;(2)根据二次根式的乘除法和加减法可以解答本题.详解:(1)原式==2;(2)原式===.点睛:本题考查了二次根式的混合运算,解答本题的关键是明确二次根式的混合运算的计算方法.16.-1【解析】【分析】直接代入求值即可解题.【详解】解:把x=-1代入代数式==-1【点睛】本题考查分式的化简求值,属于简单题,解题关键是熟悉掌握代入求值的方法.17.(1)S△ABC=2.94;(2)AB=3.5cm;(3)CD=1.68cm.【解析】【分析】(1)根据三角形的面积公式进行计算即可;

(2)利用勾股定理可得出斜边AB的长;

(3)利用面积的两种表达式可得出CD.【详解】解:如图所示:(1)S△ABC=AC×BC=2.94;(2)AB==3.5cm;(3)BC×AC=AB×CD,解得:CD=1.68cm.【点睛】本题考查了勾股定理及直角三角形的面积,注意掌握三角形面积的不同表示方法.18..【解析】分析:设BC=x,则AB=2x,再根据勾股定理求出x的值,进而得出结论.详解:∵在Rt△ABC中,∠C=90°,∠A=30°,AC=2,

∴设BC=x,则AB=2x,

∵AC2+BC2=AB2,即22+x2=(2x)2,

解得x=,

∴AB=2x=.点睛:本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.19.AC=13cm;【解析】【分析】在△ABD中,根据勾股定理的逆定理即可判断AD⊥BC,然后根据线段的垂直平分线的性质,即可得到AC=AB,从而求解.【详解】解:∵AD是中线,AB=13,BC=10,∴BD=BC=5

∵52+122=132,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC

又∵BD=CD,∴AC=AB=13.

.【点睛】本题主要考查了勾股定理的逆定理与线段的垂直平分线的性质,关键是利用勾股定理的逆定理证得AD⊥BC.20.(1)12,(2)【解析】试题分析:(1)首先根据菱形的性质可得菱形的边长为48÷4=12cm,然后再证明△ABC是等边三角形,进而得到AC=AB=12cm,然后再根据勾股定理得出BO的长,进而可得BD的长即可;(2)根据菱形的面积公式=对角线之积的一半可得答案.试题解析:(1)∵菱形ABCD的周长是48cm,∴AB=BC=CD=DA=12cm,又∵∠ABC与∠BAD的度数比为1:2,∠ABC=60°,∴△ABC是正三角形,AC=AB=12cm,又∠ABO=30°,∴AO=6cm,BO=cm,BD=cm,(2)S菱形ABCD=AC·BD=cm2.考点:菱形的性质21.周长20,面积24.【解析】【分析】首先根据题意画出图形,然后由菱形的两条对角线长分别是6和8,可求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长与面积.【详解】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=AC=4,OB=BD=3,AC⊥BD

∴AB=5(勾股定理)

∴此菱形的周长是:5×4=20,

面积是:×6×8=24

故菱形的周长是20,面积是24.【点睛】本题考查了菱形的周长和性质得求法,属于简单题,熟悉菱形的性质和菱形求面积的特殊方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论