




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,若方程在上有且只有三个实数根,则实数的取值范围为()A. B. C. D.2.已知,那么()A. B. C. D.3.三棱锥中,互相垂直,,是线段上一动点,若直线与平面所成角的正切的最大值是,则三棱锥的外接球的表面积是()A. B. C. D.4.在锐角中,若,则角的大小为()A.30° B.45° C.60° D.75°5.若,A点的坐标为,则B点的坐标为()A. B. C. D.6.化为弧度是A. B. C. D.7.若,,表示三条不重合的直线,,表示两个不同的平面,则下列命题中,正确的个数是()①若,,则②,,,则③若,,则④若,,则A.0 B.1 C.2 D.38.已知两点,,若直线与线段相交,则实数的取值范围是()A. B.C. D.9.数列中,,,则().A. B. C. D.10.直线被圆截得的劣弧与优弧的长之比是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知的一个内角为,并且三边长构成公差为4的等差数列,则的面积为_______________.12.已知数列中,其前项和为,,则_____.13.已知方程的两根分别为、、且,且__________.14.设y=f(x)是定义域为R的偶函数,且它的图象关于点(2,0)对称,若当x∈(0,2)时,f(x)=x2,则f(19)=_____15.不等式的解集是______.16.设函数,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,在平行四边形ABCD中,若,,.(1)若,求的值;(2)若,求的值.18.已知圆的圆心在轴的正半轴上,半径为2,且被直线截得的弦长为.(1)求圆的方程;(2)设是直线上的动点,过点作圆的切线,切点为,证明:经过,,三点的圆必过定点,并求出所有定点的坐标.19.如图,四棱锥,平面ABCD,四边形ABCD是直角梯形,,,,E为PB中点.(1)求证:平面PCD;(2)求证:.20.已知数列的通项公式为.(1)求这个数列的第10项;(2)在区间内是否存在数列中的项?若有,有几项?若没有,请说明理由.21.如图,是边长为2的正三角形.若,平面,平面平面,,且.(1)求证:平面;(2)求证:平面平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
先辅助角公式化简,先求解方程的根的表达式,再根据在上有且只有三个实数根列出对应的不等式求解即可.【详解】.又在上有且只有三个实数根,故,解得或,即或,.设直线与在上从做到右的第三个交点为,第四个交点为.则,.故.故实数的取值范围为.故选:A【点睛】本题主要考查了根据三角函数的根求解参数范围的问题,需要根据题意先求解根的解析式,进而根据区间中的零点个数列出区间端点满足的关系式求解即可.属于中档题.2、A【解析】依题意有,故3、B【解析】是线段上一动点,连接,∵互相垂直,∴就是直线与平面所成角,当最短时,即时直线与平面所成角的正切的最大.此时,,在直角△中,.三棱锥扩充为长方体,则长方体的对角线长为,∴三棱锥的外接球的半径为,∴三棱锥的外接球的表面积为.选B.点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点构成的三条线段两两互相垂直,且,一般把有关元素“补形”成为一个球内接长方体,利用求解.4、B【解析】
直接利用正弦定理计算得到答案.【详解】根据正弦定理得到:,故,是锐角三角形,故.故选:.【点睛】本题考查了正弦定理解三角形,意在考查学生的计算能力.5、A【解析】
根据向量坐标的求解公式可求.【详解】设,因为A点的坐标为,所以.所以,即.故选:A.【点睛】本题主要考查平面向量坐标的运算,侧重考查数学运算的核心素养.6、D【解析】
由于,则.【详解】因为,所以,故选D.【点睛】本题考查角度制与弧度制的互化.7、B【解析】
①根据空间线线位置关系的定义判定;②根据面面平行的性质判定;③根据空间线线垂直的定义判定;④根据线面垂直的性质判定.【详解】解:①若,,与的位置关系不定,故错;②若,,,则或、异面,故错;③若,,则或、异面,故错;④若,,则,故正确.故选:.【点睛】本题考查了空间线面位置关系,考查了空间想象能力,属于中档题.8、D【解析】
找出直线与PQ相交的两种临界情况,求斜率即可.【详解】因为直线恒过定点,根据题意,作图如下:直线与线段PQ相交的临界情况分别为直线MP和直线MQ,已知,,由图可知:当直线绕着点M向轴旋转时,其斜率范围为:;当直线与轴重合时,没有斜率;当直线绕着点M从轴至MP旋转时,其斜率范围为:综上所述:,故选:D.【点睛】本题考查直线斜率的计算,直线斜率与倾斜角的关系,属基础题.9、B【解析】
通过取倒数的方式可知数列为等差数列,利用等差数列通项公式求得,进而得到结果.【详解】由得:,即数列是以为首项,为公差的等差数列本题正确选项:【点睛】本题考查利用递推关系式求解数列中的项的问题,关键是能够根据递推关系式的形式,确定采用倒数法得到等差数列.10、A【解析】
计算出圆心到直线的距离,根据垂径定理,结合锐角三角函数关系,可以求出劣弧所对的圆心角的度数,根据弧度制的定义,这样就可以求出劣弧与优弧的长之比.【详解】圆心O到直线的距离为:,直线被圆截得的弦为AB,弦AB所对的圆心角为,弦AB的中点为C,由垂径定理可知:,所以,劣弧与优弧的长之比为:,故本题选A.【点睛】本题考查了圆的垂径定理、点到直线距离公式、弧长公式,考查了数学运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
试题分析:设三角形的三边长为a-4,b=a,c=a+4,(a<b<c),根据题意可知三边长构成公差为4的等差数列,可知a+c=2b,C=120,,则由余弦定理,c=a+b-2abcosC,,三边长为6,10,14,,b=a+c-2accosB,即(a+c)=a+c-2accosB,cosB=,sinB=可知S==.考点:本试题主要考查了等差数列与解三角形的面积的求解的综合运用.点评:解决该试题的关键是利用余弦定理来求解,以及边角关系的运用,正弦面积公式来求解.巧设变量a-4,a,a+4会简化运算.12、1【解析】
本题主要考查了已知数列的通项式求前和,根据题目分奇数项和偶数项直接求即可。【详解】,则.故答案为:1.【点睛】本题主要考查了给出数列的通项式求前项和以及极限。求数列的前常用的方法有错位相减、分组求和、裂项相消等。本题主要利用了分组求和的方法。属于基础题。13、【解析】
由韦达定理和两角和的正切公式可得,进一步缩小角的范围可得,进而可求.【详解】方程两根、,,,,又,,,,,,,结合,,故答案为.【点睛】本题考查两角和与差的正切函数,涉及韦达定理,属中档题.14、﹣1.【解析】
根据题意,由函数的奇偶性与对称性分析可得,即函数是周期为的周期函数,据此可得,再由函数的解析式计算即可.【详解】根据题意,是定义域为的偶函数,则,又由得图象关于点对称,则,所以,即函数是周期为的周期函数,所以,又当时,,则,所以.故答案为:.【点睛】本题考查函数的奇偶性与周期性的性质以及应用,注意分析函数的周期性,属于基础题.15、【解析】
由题可得,分式化乘积得,进而求得解集.【详解】由移项通分可得,即,解得,故解集为【点睛】本题考查分式不等式的解法,属于基础题.16、【解析】
利用反三角函数的定义,解方程即可.【详解】因为函数,由反三角函数的定义,解方程,得,所以.故答案为:【点睛】本题考查了反三角函数的定义,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)22【解析】
(1)易得,,再由即可得解;(2)由可得出,再由,可得:,即,即可得到的值.【详解】(1)由向量的加法法则得:,,,因为,所以;(2),∴,∴,即,∴.【点睛】本题平面向量的应用,考查向量的加法法则,考查向量数量积的应用,考查逻辑思维能力和运算能力,属于常考题.18、(1)圆:.(2)证明见解析;,.【解析】
(1)设出圆心坐标,利用点到直线距离公式以及圆的弦长列方程,解方程求得圆心坐标,进而求得圆的方程.(2)设出点坐标,根据过圆的切线的几何性质,得到过,,三点的圆是以为直径的圆.设出圆上任意一点的坐标,利用,结合向量数量积的坐标运算进行化简,得到该圆对应的方程,根据方程过的定点与无关列方程组,解方程组求得该圆所过定点.【详解】解:(1)设圆心,则圆心到直线的距离.因为圆被直线截得的弦长为∴.解得或(舍),∴圆:.(2)已知,设,∵为切线,∴,∴过,,三点的圆是以为直径的圆.设圆上任一点为,则.∵,,∴即.若过定点,即定点与无关令解得或,所以定点为,.【点睛】本小题主要考查圆的几何性质,考查圆的弦长有关计算,考查曲线过定点问题的求解策略,考查向量数量积的坐标运算,属于中档题.19、(1)证明见详解;(2)证明见详解【解析】
(1)取的中点,证出,再利用线面平行的判定定理即可证出.(2)利用线面垂直的判定定理可证出平面,再根据线面垂直的定义即可证出.【详解】如图,取的中点,连接,E为PB中点,,且,又,,,,为平行四边形,即,又平面PCD,平面PCD,所以平面PCD.(2)由平面ABCD,所以,又因为,,所以,,平面,又平面,.【点睛】本题考查了线面平行的判定定理、线面垂直的判定定理,要证线面平行,需先证线线平行;要证异面直线垂直,可先证线面垂直,此题属于基础题.20、(1)(2)只有一项【解析】
(1)根据通项公式直接求解(2)根据条件列不等式,解得结果【详解】解:(1);(2)解不等式得,因为为正整数,所以,因此在区间内只有一项.【点睛】本题考查数列通项公式及其应用,考查基本分析求解能力,属基础题21、(1)见解析;(2)见解析【解析】
(1)取的中点,连接,由平面平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 销售真空搅拌机合同范本
- 焦油购销合同协议书模板
- 销售合同的补充技术协议
- 粤港澳车买卖协议合同书
- 维修转包合同协议书范本
- 租用冷藏货车合同协议书
- 门面房提前退租合同范本
- 材料合同担保协议书模板
- 电力运维培训合同协议书
- 汕头进口食品销毁协议书
- 《服务设计》课程教学大纲
- 消防维保方案(消防维保服务)(技术标)
- 阿勒泰布尔津县高校毕业生“三支一扶”计划招募考试题库
- 少儿硬笔书法启蒙教学30讲PPT课件配套教案
- 岩棉施工方案改
- 钢筋配筋全套表格
- GB/T 1688-1986硫化橡胶伸张疲劳的测定
- 急性心梗后机械并发症课件整理
- 声律启蒙课件《二冬》课件
- 装修改造工程施工总平面图6
- 《小企业会计准则》相关二级科目设置
评论
0/150
提交评论