福建省三明市2022-2023学年数学高一下期末联考模拟试题含解析_第1页
福建省三明市2022-2023学年数学高一下期末联考模拟试题含解析_第2页
福建省三明市2022-2023学年数学高一下期末联考模拟试题含解析_第3页
福建省三明市2022-2023学年数学高一下期末联考模拟试题含解析_第4页
福建省三明市2022-2023学年数学高一下期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知两点,,若点是圆上的动点,则△面积的最小值是A. B.6 C.8 D.2.在锐角中,若,,,则()A. B. C. D.3.已知角的终边经过点,则=()A. B. C. D.4.若是函数的两个不同的零点,且这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则的值等于()A.1 B.5 C.9 D.45.在中,,,其面积为,则等于()A. B. C. D.6.若正实数满足,且恒成立,则实数的取值范围为()A. B. C. D.7.已知直线与直线平行,则实数m的值为()A.3 B.1 C.-3或1 D.-1或38.下列结论正确的是()A.若则; B.若,则C.若,则 D.若,则;9.已知在R上是奇函数,且满足,当时,,则()A.-2 B.2 C.-98 D.9810.在中,内角的对边分别为,且,,若,则()A.2 B.3 C.4 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知过两点,的直线的倾斜角是,则______.12.不等式的解集为________13.已知的三边分别是,且面积,则角__________.14.直线x-315.已知向量,则___________.16.过点且与直线l:垂直的直线方程为______.(请用一般式表示)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,,,的对边分别为,,,已知.(1)判断的形状;(2)若,,求.18.如图,在直四棱柱中,底面为等腰梯形,,,,,、、分别是、、的中点.(1)证明:直线平面;(2)求直线与面所成角的大小;(3)求二面角的平面角的余弦值.19.已知向量(cosx+sinx,1),(sinx,),函数.(1)若f(θ)=3且θ∈(0,π),求θ;(2)求函数f(x)的最小正周期T及单调递增区间.20.已知函数.(1)求函数的值域和单调减区间;(2)已知为的三个内角,且,,求的值.21.如图,在直角梯形中,,,,,记,.(1)用,表示和;(2)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

求得圆的方程和直线方程以及,利用三角换元假设,利用点到直线距离公式和三角函数知识可求得,代入三角形面积公式可求得结果.【详解】由题意知,圆的方程为:,直线方程为:,即设点到直线的距离:,其中当时,本题正确选项:【点睛】本题考查点到直线距离的最值的求解问题,关键是能够利用三角换元的方式将问题转化为三角函数的最值的求解问题.2、D【解析】

由同角三角函数关系式,先求得,再由余弦定理即可求得的值.【详解】因为为锐角三角形,由同角三角函数关系式可得又因为,由余弦定理可得代入可得所以故选:D【点睛】本题考查了同角三角函数关系式应用,余弦定理求三角形的边,属于基础题.3、D【解析】试题分析:由题意可知x=-4,y=3,r=5,所以.故选D.考点:三角函数的概念.4、C【解析】试题分析:由韦达定理得,,则,当适当排序后成等比数列时,必为等比中项,故,.当适当排序后成等差数列时,必不是等差中项,当是等差中项时,,解得,;当是等差中项时,,解得,,综上所述,,所以.考点:等差中项和等比中项.5、A【解析】

先由三角形面积公式求出,再由余弦定理得到,再由正弦定理,即可得出结果.【详解】因为在中,,,其面积为,所以,因此,所以,所以,由正弦定理可得:,所以.故选A【点睛】本题主要考查解三角形,熟记正弦定理和余弦定理即可,属于基础题型.6、A【解析】

先利用基本不等求出的最小值,然后根据恒成立,可得,再求出a的范围.【详解】因为正实数x,y满足,,当且仅当,即时取等号,恒成立,所以只需,,,的取值范围为,故选:A.【点睛】本题主要考查不等式恒成立问题以及基本不等式求最值,解题时注意“一正、二定、三相等”的应用,本题属于中档题.7、B【解析】

两直线平行应该满足,利用系数关系及可解得m.【详解】两直线平行,可得(舍去).选B.【点睛】两直线平行的一般式对应关系为:,若是已知斜率,则有,截距不相等.8、D【解析】

根据不等式的性质,结合选项,进行逐一判断即可.【详解】因,则当时,;当时,,故A错误;因,则或,故B错误;因,才有,条件不足,故C错误;因,则,则只能是,故D正确.故选:D.【点睛】本题考查不等式的基本性质,需要对不等式的性质非常熟练,属基础题.9、A【解析】

由在R上是奇函数且周期为4可得,即可算出答案【详解】因为在R上是奇函数,且满足所以因为当时,所以故选:A【点睛】本题考查的是函数的奇偶性和周期性,较简单.10、B【解析】

利用正弦定理化简,由此求得的值.利用三角形内角和定理和两角和与差的正弦公式化简,由此求得的值,进而求得的值.【详解】利用正弦定理化简得,所以为锐角,且.由于,所以由得,化简得.若,则,故.若,则,由余弦定理得,解得.综上所述,,故选B.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查同角三角函数的基本关系式,考查三角形内角和定理,考查两角和与差的正弦公式,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由两点求斜率公式及斜率等于倾斜角的正切值列式求解.【详解】解:由已知可得:,即,则.故答案为.【点睛】本题考查直线的斜率,考查直线倾斜角与斜率的关系,是基础题.12、【解析】因为所以,即不等式的解集为.13、【解析】试题分析:由,可得,整理得,即,所以.考点:余弦定理;三角形的面积公式.14、π【解析】

将直线方程化为斜截式,利用直线斜率与倾斜角的关系求解即可.【详解】因为x-3所以y=33x-33则tanα=33,α=【点睛】本题主要考查直线的斜率与倾斜角的关系,意在考查对基础知识的掌握情况,属于基础题.15、【解析】

根据向量夹角公式可求出结果.【详解】.【点睛】本题考查了向量夹角的运算,牢记平面向量的夹角公式是破解问题的关键.16、【解析】

与直线垂直的直线方程可设为,再将点的坐标代入运算即可得解.【详解】解:与直线l:垂直的直线方程可设为,又该直线过点,则,则,即点且与直线l:垂直的直线方程为,故答案为:.【点睛】本题考查了与已知直线垂直的直线方程的求法,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)为直角三角形或等腰三角形(2)【解析】

(1)由正弦定理和题设条件,得,再利用三角恒等变换的公式,化简得,进而求得或,即可得到答案.(2)在中,利用余弦定理,求得,即可求得的值.【详解】(1)由正弦定理可知,代入,,又由,所以,所以,所以,则,则或,所以或,所以为直角三角形或等腰三角形.(2)因为,则为等腰三角形,从而,由余弦定理,得,所以.【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.18、(1)证明见解析(2)(3)【解析】

(1)取的中点,证明为平行四边形,且,再由三角形中位线证明,最后由线面平行的判定定理证明即可;(2)作交于点,由线面垂直关系得到直线与面所成角为,再根据是正三角形求解即可;(3)由(2)知,平面,再证明和分别垂直于,求出直线与面所成角为,再求出和的长度即可求解.【详解】(1)在直四棱柱中,取的中点,连接,,,因为,,且,所以为平行四边形,所以,又因为、分别是棱、的中点,所以,所以,因为.所以、、、四点共面,所以平面,又因为平面,所以直线平面.(2)因为,,是棱的中点,所以,为正三角形,取的中点,则,又因为直四棱柱中,平面,所以,所以平面,即直线与面所成角为,所以,即,所以直线与面所成角为.(3)过在平面内作,垂足为,连接.因为面,即,且与相交于点,故且,则为二面角的平面角,在正三角形中,,在中,,∵,∴,在中,,,所以二面角的余弦值为.【点睛】本题主要考查线面平行的判定、线面角和二面角的求法,考查学生的空间想象能力和对线面关系的掌握,属于中档题.19、(1)θ(2)最小正周期为π;单调递增区间为[kπ,kπ],k∈Z【解析】

(1)计算平面向量的数量积得出函数f(x)的解析式,求出f(θ)=3时θ的值;

(2)根据函数f(x)的解析式,求出它的最小正周期和单调递增区间.【详解】(1)向量(cosx+sinx,1),(sinx,),函数=sinx(cosx+sinx)sinxcosx+sin2xsin2xcos2x+2=sin(2x)+2,f(θ)=3时,sin(2θ)=1,解得2θ2kπ,k∈Z,即θkπ,k∈Z;又θ∈(0,π),所以θ;(2)函数f(x)=sin(2x)+2,它的最小正周期为Tπ;令2kπ≤2x2kπ,k∈Z,kπ≤xkπ,k∈Z,所以f(x)的单调递增区间为[kπ,kπ],k∈Z.【点睛】本题考查了平面向量的数量积计算问题,也考查了三角函数的图象与性质的应用问题,是基础题.20、(1),;(2).【解析】

(1)将函数化简,利用三角函数的取值范围的单调性得到答案.(2)通过函数计算,,再计算代入数据得到答案.【详解】(1)∵且∴故所求值域为由得:所求减区间:;(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论