版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某班由50个编号为01,02,03,…50的学生组成,现在要选取8名学生参加合唱团,选取方法是从随机数表的第1行的第11列开始由左到右依次选取两个数字,则该样本中选出的第8名同学的编号为()495443548217379323783035209623842634916450258392120676572355068877047447672176335025839212067649544354827447A.20 B.25 C.26 D.342.已知,,,则()A. B. C.-7 D.73.数列中,,则数列的极限值()A.等于0 B.等于1 C.等于0或1 D.不存在4.已知,集合,则A. B. C. D.5.如图,两点为山脚下两处水平地面上的观测点,在两处观察点观察山顶点的仰角分别为,若,,且观察点之间的距离比山的高度多100米,则山的高度为()A.100米 B.110米 C.120米 D.130米6.在中,,且,若,则()A.2 B.1 C. D.7.中,,则()A. B. C.或 D.8.已知向量,,如果向量与平行,则实数的值为()A. B. C. D.9.甲、乙、丙、丁四名运动员参加奥运会射击项目选拔赛,四人的平均成绩和方差如下表所示,从这四个人中选择一人参加奥运会射击项目比赛,最佳人选是()人数据甲乙丙丁平均数8.68.98.98.2方差3.53.52.15.6A.甲 B.乙 C.丙 D.丁10.阅读程序框图,运行相应的程序,输出的结果为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.三棱锥P﹣ABC的底面ABC是等腰三角形,AC=BC=2,AB=2,侧面PAB是等边三角形且与底面ABC垂直,则该三棱锥的外接球表面积为_____.12.已知,若方程的解集为,则__________.13.已知函数,有以下结论:①若,则;②在区间上是增函数;③的图象与图象关于轴对称;④设函数,当时,.其中正确的结论为__________.14.关于函数f(x)=4sin(2x+)(x∈R),有下列命题:①y=f(x)的表达式可改写为y=4cos(2x﹣);②y=f(x)是以2π为最小正周期的周期函数;③y=f(x)的图象关于点对称;④y=f(x)的图象关于直线x=﹣对称.其中正确的命题的序号是.15.已知角的终边经过点,则______.16.把二进制数化为十进制数是:______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某同学利用暑假时间到一家商场勤工俭学,该商场向他提供了三种付款方式:第一种,每天支付38圆;第二种,第一天付4元,第二天付8元,第三天付12元,以此类推:第三种,第一天付0.4元,以后每天比前一天翻一番(即增加一倍),你会选择哪种方式领取报酬呢?18.已知向量,向量.(1)求向量的坐标;(2)当为何值时,向量与向量共线.19.若,讨论关于x的方程在上的解的个数.20.已知为等边角形,.点满足,,.设.试用向量和表示;若,求的值.21.设是等差数列,且.(Ⅰ)求的通项公式;(Ⅱ)求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
利用随机数表依次选出8名学生的二位数的编号,超出范围的、重复的要舍去.【详解】从随机数表的第1行的第11列开始由左到右依次选取两个数字,选出来的8名学生的编号分别为:17,37,(93舍去)23,(78舍去)30,35,20,(96舍去)(23舍去)(84舍去)26,1;∴样本选出来的第8名同学的编号为1.故选:D【点睛】本题考查了利用随机数表法求抽样编号的问题,属于基础题.2、C【解析】
把已知等式平方后可求得.【详解】∵,∴,即,,∵,∴,∴,,∴.故选C.【点睛】本题考查同角间的三角函数关系,考查两角和的正切公式,解题关键是把已知等式平方,并把1用代替,以求得.3、B【解析】
根据题意得到:时,,再计算即可.【详解】因为当时,.所以.故选:B【点睛】本题主要考查数列的极限,解题时要注意公式的选取和应用,属于中档题.4、D【解析】
先求出集合A,由此能求出∁UA.【详解】∵U=R,集合A={x|1﹣2x>0}={x|x},∴∁UA={x|x}.故选:D.【点睛】本题考查补集的求法,考查补集定义、不等式性质等基础知识,考查运算求解能力,是基础题.5、A【解析】
设山的高度为,求出AB=2x,根据,求出山的高度.【详解】设山的高度为,如图,由,有.在中,,有,又由观察点之间的距离比山的高度多100,有.故山的高度为100.故选A【点睛】本题主要考查解三角形的实际应用,意在考查学生对该知识的理解掌握水平,属于基础题.6、A【解析】
取的中点,连接,根据,即可得解.【详解】取的中点,连接,在中,,且,所以,.故选:A【点睛】此题考查求向量的数量积,涉及平面向量的线性运算,根据数量积的几何意义求解,可以简化计算.7、A【解析】
根据正弦定理,可得,然后根据大边对大角,可得结果..【详解】由,所以由,所以故,所以故选:A【点睛】本题考查正弦定理的应用,属基础题.8、B【解析】
根据坐标运算求出和,利用平行关系得到方程,解方程求得结果.【详解】由题意得:,,解得:本题正确选项:【点睛】本题考查向量平行的坐标表示问题,属于基础题.9、C【解析】
甲,乙,丙,丁四个人中乙和丙的平均数最大且相等,甲,乙,丙,丁四个人中丙的方差最小,说明丙的成绩最稳定,得到丙是最佳人选.【详解】甲,乙,丙,丁四个人中乙和丙的平均数最大且相等,甲,乙,丙,丁四个人中丙的方差最小,说明丙的成绩最稳定,综合平均数和方差两个方面说明丙成绩即高又稳定,丙是最佳人选,故选:C.【点睛】本题考查平均数和方差的实际应用,考查数据处理能力,求解时注意方差越小数据越稳定.10、D【解析】
按照程序框图运行程序,直到时输出结果即可.【详解】按照程序框图运行程序输入,,则,满足,,则,满足,,则,满足,,则,满足,,则,满足,,则,不满足,输出故选:【点睛】本题考查根据程序框图计算输出结果的问题,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
求出的外接圆半径,的外接圆半径,求出外接球的半径,即可求出该三棱锥的外接球的表面积.【详解】由题意,设的外心为,的外心为,则的外接圆半径,在中,因为,由余弦定理可得,所以,所以的外接圆半径,在等边中,由,所以,所以,设球心为,球的半径为,则,又由面,面,则,所以该三棱锥的外接球的表面积为.故答案为:.【点睛】本题主要考查了三棱锥的外接球的表面积的求解,其中解答中熟练应用空间几何体的结构特征,确定球的半径是解答的关键,着重考查了空间想象能力,以及推理与运算能力,属于中档试题.12、【解析】
将利用辅助角公式化简,可得出的值.【详解】,其中,,因此,,故答案为.【点睛】本题考查利用辅助角公式化简计算,化简时要熟悉辅助角变形的基本步骤,考查运算求解能力,属于中等题.13、②③④【解析】
首先化简函数解析式,逐一分析选项,得到答案.【详解】①当时,函数的周期为,,或,所以①不正确;②时,,所以是增函数,②正确;③函数还可以化简为,所以与关于轴对称,正确;④,当时,,,④正确故选②③④【点睛】本题考查了三角函数的化简和三角函数的性质,属于中档题型.14、①③【解析】
∵f(x)=4sin(2x+)=4cos()=4cos(﹣2x+)=4cos(2x﹣),故①正确;∵T=,故②不正确;令x=﹣代入f(x)=4sin(2x+)得到f(﹣)=4sin(+)=0,故y=f(x)的图象关于点对称,③正确④不正确;故答案为①③.15、【解析】由题意,则.16、51【解析】110011(2)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、见解析【解析】
,,.下面考察,,的大小.可以看出时,.因此,当工作时间小于10天时,选用第一种付费方式,时,,,因此,选用第三种付费方式.18、(1)(2)【解析】试题分析:(1)根据向量坐标运算公式计算;(2)求出的坐标,根据向量共线与坐标的关系列方程解出k;试题解析:(1)(2),∵与共线,∴∴19、答案不唯一,见解析【解析】
首先将方程化简为,再画出的图像,根据和交点的个数即可求出方程根的个数.【详解】由题知:,,.令,,图像如图所示:当或,即或时,无解,即方程无解.当,即时,得到,则方程有两个解.当,即时,得到在有两个解,则方程有四个解.当,即时,得到或,则方程有四个解.当,即时,得到在有一个解,则方程有两个解.当,即时,得到,则方程有一个解.综上所述:当或时,即方程无解,当时,方程有一个解.当或时,方程有两个解.当时,方程有四个解.【点睛】本题主要考查函数的零点问题,同时考查了分类讨论的思想,数形结合为解题的关键,属于难题.20、(1);;(2).【解析】
(1)根据向量线性运算法则可直接求得结果;(2)根据(1)的结论将已知等式化为;根据等边三角形边长和夹角可将等式变为关于的方程,解方程求得结果.【详解】(1)(2)为等边三角形且,即:,解得:【点睛】本题考查平面向量线性运算、数量积运算的相关知识;关键是能够将等式转化为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- ui设计课件教学课件
- 鼻内窥镜手术病人的护理
- 未来工作规划及发展
- 年度人力资源工作规划
- 新生儿气道的管理
- 九下英语14单元知识课件
- 钻石首饰精美设计
- 直复营销世界风推广-调研总结和案例讨论V06
- 幼儿园班务总结小班
- 浙江省杭州市北斗联盟2024-2025学年高二上学期期中联考英语试题 含解析
- 《小水电生态流量泄放设施改造及监测技术导则》
- 车辆维修及配件采购项目 投标方案(技术标 )
- 2024年高考真题-政治(福建卷) 含解析
- 2024年PLC控制系统升级与维护服务合同
- 外墙清洗高空作业方案
- 大模型技术深度赋能保险行业白皮书2024
- 教育系统突发公共安全事件应急预案
- 道 法+增强安全意识+课件-2024-2025学年统编版道德与法治七年级上册
- 2024海康威视综合安防平台(服务器)DS-VE22S-B系列安装指南
- 第九周 任意角和弧度制和三角函数的概念-高一数学人教A版(2019)必修第一册周周测
- 临床药师进修汇报课件
评论
0/150
提交评论