




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等差数列中,若,则取最小值时的()A.9 B.8 C.7 D.62.已知向量,,若,则锐角α为()A.45° B.60° C.75° D.30°3.已知函数的最小正周期为,若,则的最小值为()A. B. C. D.4.已知向量,,若向量与的夹角为,则实数()A. B. C. D.5.从1,2,3,…,9这个9个数中任取5个不同的数,则这5个数的中位数是5的概率等于()A.57 B.59 C.26.已知函数,点A、B分别为图象在y轴右侧的第一个最高点和第一个最低点,O为坐标原点,若△OAB为锐角三角形,则的取值范围为()A. B. C. D.7.函数的图象如图所示,则y的表达式为()A. B.C. D.8.在等差数列中,,则()A. B. C. D.9.的展开式中含的项的系数为()A.-1560 B.-600 C.600 D.156010.已知集合,,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若过点作圆的切线,则直线的方程为_______________.12.在中,已知角的对边分别为,且,,,若有两解,则的取值范围是__________.13.如果函数的图象关于直线对称,那么该函数在上的最小值为_______________.14.若直线与圆有公共点,则实数的取值范围是__________.15.若,则=_________________16.数列的前项和,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(其中,)的最小正周期为,且图象经过点(1)求函数的解析式:(2)求函数的单调递增区间.18.已知圆过点和,且圆心在直线上.(Ⅰ)求圆的标准方程;(Ⅱ)求直线:被圆截得的弦长.19.已知向量,满足,,且.(1)求;(2)在中,若,,求.20.为响应国家“精准扶贫、精准脱贫”的号召,某贫困县在精准推进上下实功,在在精准落实上见实效现从全县扶贫对象中随机抽取人对扶贫工作的满意度进行调查,以茎叶图中记录了他们对扶贫工作满意度的分数(满分分)如图所示,已知图中的平均数与中位数相同.现将满意度分为“基本满意”(分数低于平均分)、“满意”(分数不低于平均分且低于分)和“很满意”(分数不低于分)三个级别.(1)求茎叶图中数据的平均数和的值;(2)从“满意”和“很满意”的人中随机抽取人,求至少有人是“很满意”的概率.21.如图,是菱形,对角线与的交点为,四边形为梯形,,.(1)若,求证:平面;(2)求证:平面平面;(3)若,求直线与平面所成角的余弦值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
是等差数列,先根据已知求出首项和公差,再表示出,由的最小值确定n。【详解】由题得,,解得,那么,当n=7时,取到最小值-49.故选:C【点睛】本题考查等差数列前n项和,是基础题。2、D【解析】
根据向量的平行的坐标表示,列出等式,即可求出.【详解】因为,所以,又为锐角,因此,即,故选D.【点睛】本题主要考查向量平行的坐标表示.3、A【解析】
由正弦型函数的最小正周期可求得,得到函数解析式,从而确定函数的最大值和最小值;根据可知和必须为最大值点和最小值点才能够满足等式;利用整体对应的方式可构造方程组求得,;从而可知时取最小值.【详解】由最小正周期为可得:,和分别为的最大值点和最小值点设为最大值点,为最小值点,当时,本题正确选项:【点睛】本题考查正弦型函数性质的综合应用,涉及到正弦型函数最小正周期和函数值域的求解;关键是能够根据函数的最值确定和为最值点,从而利用整体对应的方式求得结果.4、B【解析】
根据坐标运算可求得与,从而得到与;利用向量夹角计算公式可构造方程求得结果.【详解】由题意得:,,,解得:本题正确选项:【点睛】本题考查利用向量数量积、模长和夹角求解参数值的问题,关键是能够通过坐标运算表示出向量和模长,进而利用向量夹角公式构造方程.5、C【解析】试题分析:设事件为“从1,2,3,…,9这9个数中5个数的中位数是5”,则基本事件总数为种,事件所包含的基本事件的总数为:,所以由古典概型的计算公式知,,故应选.考点:1.古典概型;6、B【解析】
△OAB为锐角三角形等价于,再运算即可得解.【详解】解:由题意可得,,由△OAB为锐角三角形,则,即,解得:,即的取值范围为,故选:B.【点睛】本题考查了三角函数图像的性质,重点考查了向量数量积的运算,属中档题.7、B【解析】
根据图像最大值和最小值可得,根据最大值和最小值的所对应的的值,可得周期,然后由,得到,代入点,结合的范围,得到答案.【详解】根据图像可得,,即,根据,得,所以,代入,得,所以,,所以,又因,所以得,所以得到,故选B.【点睛】本题考查根据函数图像求正弦型函数的解析式,属于简单题.8、B【解析】
利用等差中项的性质得出关于的等式,可解出的值.【详解】由等差中项的性质可得,由于,即,即,解得,故选:B.【点睛】本题考查等差中项性质的应用,解题时充分利用等差中项的性质进行计算,可简化计算,考查运算能力,属于基础题.9、A【解析】的项可以由或的乘积得到,所以含的项的系数为,故选A.10、A【解析】
先化简集合,根据交集与并集的概念,即可得出结果。【详解】因为,,所以,.故选A【点睛】本题主要考查集合的基本运算,熟记概念即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】
讨论斜率不存在时是否有切线,当斜率存在时,运用点到直线距离等于半径求出斜率【详解】圆即①当斜率不存在时,为圆的切线②当斜率存在时,设切线方程为即,解得此时切线方程为,即综上所述,则直线的方程为或【点睛】本题主要考查了过圆外一点求切线方程,在求解过程中先讨论斜率不存在的情况,然后讨论斜率存在的情况,利用点到直线距离公式求出结果,较为基础。12、【解析】
利用正弦定理得到,再根据有两解得到,计算得到答案.【详解】由正弦定理得:若有两解:故答案为【点睛】本题考查了正弦定理,有两解,意在考查学生的计算能力.13、【解析】
根据三角公式得辅助角公式,结合三角函数的对称性求出值,再利用的取值范围求出函数的最小值.【详解】解:,令,则,则.因为函数的图象关于直线对称,所以,即,则,平方得.整理可得,则,所以函数.因为,所以,当时,即,函数有最小值为.故答案为:.【点睛】本题主要考查三角函数最值求解,结合辅助角公式和利用三角函数的对称性建立方程是解决本题的关键.14、【解析】
直线与圆有交点,则圆心到直线的距离小于或等于半径.【详解】直线即,圆的圆心为,半径为,若直线与圆有交点,则,解得,故实数的取值范围是.【点睛】本题考查直线与圆的位置关系,点到直线距离公式是常用方法.15、【解析】分析:由二倍角公式求得,再由诱导公式得结论.详解:由已知,∴.故答案为.点睛:三角函数恒等变形中,公式很多,如诱导公式、同角关系,两角和与差的正弦(余弦、正切)公式、二倍角公式,先选用哪个公式后选用哪个公式在解题中尤其重要,但其中最重要的是“角”的变换,要分析出已知角与未知角之间的关系,通过这个关系都能选用恰当的公式.16、【解析】
根据数列前项和的定义即可得出.【详解】解:因为所以.故答案为:.【点睛】考查数列的定义,以及数列前项和的定义,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2),.【解析】
(1)根据最小正周期可求得;代入点,结合的范围可求得,从而得到函数解析式;(2)令,解出的范围即为所求的单调递增区间.【详解】(1)最小正周期过点,,解得:,的解析式为:(2)由,得:,的单调递增区间为:,【点睛】本题考查根据三角函数性质求解函数解析式、正弦型函数单调区间的求解;关键是能够采用整体对应的方式来利用正弦函数的最值和单调区间求解正弦型函数的解析式和单调区间.18、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)设出圆心坐标和圆的标准方程,将点带入求出结果即可;(Ⅱ)利用圆心到直线的距离和圆的半径解直角三角形求得弦长.【详解】解:(Ⅰ)由题意可设圆心坐标为,则圆的标准方程为,∴解得故圆的标准方程为.(Ⅱ)圆心到直线的距离,∴直线被圆截得的弦长为.【点睛】本题考查了圆的方程,以及直线与圆相交求弦长的知识,属于基础题.19、(1)(2)【解析】
(1)将展开得到答案.(2),平方计算得到答案.【详解】解:(1)因为所以,,所以,,又夹角在上,∴;(2)因为,所以,,所以,边的长度为.【点睛】本题考查了向量的夹角,向量的加减计算,意在考查学生的计算能力.20、(1)平均数为;(2)【解析】
(1)由题意,根据图中个数据的中位数为,由平均数与中位数相同,得平均数为,所以,解得;(2)依题意,人中,“基本满意”有人,“满意”有人,“很满意”有人.“满意”和“很满意”的人共有人.分别记“满意”的人为,,,,“很满意”的人为,,,.从中随机抽取人的一切可能结果所组成的基本事件共个:,,,,,,,,,,,,,,,,,,,,,,,,,,,.用事件表示“人中至少有人是很满意”这一件事,则事件由个基本事件组成:,,,,,,,,,,,,,,,,,,,,,,共有22个.故事件的概率为【点睛】本题主要考查了茎叶图的应用,以及古典概型及其概率的计算问题,其中解答中熟记茎叶图的中的平均数和中位数的计算,以及利用列举法得出基本事件的总数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.21、(1)证明见解析;(2)证明见解析;(3)【解析】
(1)取的中点,连接,,从而可得为平行四边形,即可证明平面;(2)只需证明平面.即可证明平面平面;(3)作于,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 63522-27:2025 EN-FR Electrical relays - Testing and measurement - Part 27: Electrical contact noise
- 2025年生物医学工程师资格考试卷及答案
- 2025年社会舆论与传播学相关试卷及答案
- 2025年环境监测与评估考试试卷及答案
- 2025年模具设计工程师考试试卷及答案
- 春节停工的应急预案(14篇)
- 2025年辅助工段控制系统合作协议书
- 2025年月桂醇聚醚磷酸钾合作协议书
- 天津市弘毅中学2024-2025学年高二下学期第一次过程性诊断数学试卷
- 2025年通信系统合作协议书
- 南瑞科技220kv断路器辅助保护nsr-322an型保护装置调试手册
- 滚筒冷渣机技术协议
- 氨基转移酶检测临床意义和评价注意点
- 中债收益率曲线和中债估值编制方法及使用说明
- Q∕GDW 10799.6-2018 国家电网有限公司电力安全工作规程 第6部分:光伏电站部分
- 国家开放大学《行政组织学》章节测试参考答案
- GA 1551.6-2021 石油石化系统治安反恐防范要求 第6部分:石油天然气管道企业
- 什么是标准工时如何得到标准工时
- 牛津译林版英语八年级下册8B——单词默写(表格版)
- 羽毛球正手网前搓球 (2)
- 楚辞英译:屈原《九歌_山鬼》汉译英
评论
0/150
提交评论