2023年江苏省溧中、省扬中、镇江一中、江都中学、句容中学数学高一下期末学业水平测试模拟试题含解析_第1页
2023年江苏省溧中、省扬中、镇江一中、江都中学、句容中学数学高一下期末学业水平测试模拟试题含解析_第2页
2023年江苏省溧中、省扬中、镇江一中、江都中学、句容中学数学高一下期末学业水平测试模拟试题含解析_第3页
2023年江苏省溧中、省扬中、镇江一中、江都中学、句容中学数学高一下期末学业水平测试模拟试题含解析_第4页
2023年江苏省溧中、省扬中、镇江一中、江都中学、句容中学数学高一下期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,,角的平分线,则长为()A. B. C. D.2.在中,,,,则的面积为A. B. C. D.3.设正实数x,y,z满足x2-3xy+4y2-z=0,则当取得最小值时,x+2y-z的最大值为()A.0 B.C.2 D.4.若,则下列不等式成立的是()A. B.C. D.5.如图,在正方体中,,分别是中点,则异面直线与所成角大小为().A. B. C. D.6.若直线与直线关于点对称,则直线恒过点()A. B. C. D.7.已知等差数列,前项和为,,则()A.140 B.280 C.168 D.568.设的内角所对边分别为.则该三角形()A.无解 B.有一解 C.有两解 D.不能确定9.设定义域为的奇函数是增函数,若对恒成立,则实数的取值范围是()A. B. C. D.10.把函数的图像上所有的点向左平行移动个单位长度,再把所得图像上所有点的横坐标缩短到原来的(纵坐标不变),得到的图像所表示的函数是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在正方体中,是棱的中点,则异面直线与所成角的余弦值为__________.12.某产品分为优质品、合格品、次品三个等级,生产中出现合格品的概率为0.25,出现次品的概率为0.03,在该产品中任抽一件,则抽到优质品的概率为__________.13.已知函数是定义在上的奇函数,当时,,则________.14.记等差数列的前项和为,若,则________.15.已知圆:,若对于圆:上任意一点,在圆上总存在点使得,则实数的取值范围为__________.16.已知向量夹角为,且,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列,.(1)记,证明:是等比数列;(2)当是奇数时,证明:;(3)证明:.18.设函数.(1)已知图象的相邻两条对称轴的距离为,求正数的值;(2)已知函数在区间上是增函数,求正数的最大值.19.某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示),由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.(1)根据频率分布直方图计算图中各小长方形的宽度;(2)试估计该公司在若干地区各投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:广告投入(单位:万元)12345销售收益(单位:万元)2337由表中的数据显示,与之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.(参考公式:)20.如图所示,在直三棱柱中,,平面,D为AC的中点.(1)求证:平面;(2)求证:平面;(3)设E是上一点,试确定E的位置使平面平面BDE,并说明理由.21.若不等式恒成立,求实数a的取值范围。

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

在中利用正弦定理可求,从而可求,再根据内角和为可得,从而得到为等腰三角形,故可求的长.【详解】在中,由正弦定理有即,所以,因为,故,故,所以,故,为等腰三角形,故.故选B.【点睛】在解三角形中,我们有时需要找出不同三角形之间相关联的边或角,由它们沟通分散在不同三角形的几何量.2、C【解析】

利用三角形中的正弦定理求出角B,利用三角形内角和求出角C,再利用三角形的面积公式求出三角形的面积,求得结果.【详解】因为中,,,,由正弦定理得:,所以,所以,所以,所以,故选C.【点睛】该题所考查的是有关三角形面积的求解问题,在解题的过程中,需要注意根据题中所给的条件,应用正弦定理求得,从而求得,之后应用三角形面积公式求得结果.3、C【解析】

由题得z=x2+4y2-3xy≥4xy-3xy=xy(x,y,z>0),即z≥xy,≥1.当且仅当x=2y时等号成立,则x+2y-z=2y+2y-(4y2-6y2+4y2)=4y-2y2=-2(y2-2y)=-2[(y-1)2-1]=-2(y-1)2+2.当y=1时,x+2y-z有最大值2.故选C.4、D【解析】

取特殊值检验,利用排除法得答案。【详解】因为,则当时,故A错;当时,故B错;当时,,故C错;因为且,所以故选D.【点睛】本题考查不等式的基本性质,属于简单题。5、C【解析】

通过中位线定理可以得到在正方体中,可以得到所以这样找到异面直线与所成角,通过计算求解.【详解】分别是中点,所以有而,因此异面直线与所成角为在正方体中,,所以,故本题选C.【点睛】本题考查了异面直线所成的角.6、C【解析】

利用直线过定点可求所过的定点.【详解】直线过定点,它关于点的对称点为,因为关于点对称,故直线恒过点,故选C.【点睛】一般地,若直线和直线相交,那么动直线必过定点(该定点为的交点).7、A【解析】由等差数列的性质得,,其前项之和为,故选A.8、C【解析】

利用正弦定理以及大边对大角定理求出角,从而判断出该三角形解的个数.【详解】由正弦定理得,所以,,,,或,因此,该三角形有两解,故选C.【点睛】本题考查三角形解的个数的判断,解题时可以充分利用解的个数的等价条件来进行判断,具体来讲,在中,给定、、,该三角形解的个数判断如下:(1)为直角或钝角,,一解;,无解;(2)为锐角,或,一解;,两解;,无解.9、A【解析】

由题意可得,即为,可得恒成立,讨论是否为0,结合换元法和基本不等式,可得所求范围.【详解】解:由题意可得,即为,可得恒成立,当时,上式显然成立;当时,可得,设,,可得,由,可得,可得,即,故选:A.【点睛】本题主要考查函数的奇偶性和单调性的运用,考查不等式恒成立问题解法,注意运用参数分离和换元法,考查化简运算能力,属于中档题.10、C【解析】

根据左右平移和周期变换原则变换即可得到结果.【详解】向左平移个单位得:将横坐标缩短为原来的得:本题正确选项:【点睛】本题考查三角函数的左右平移变换和周期变换的问题,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

假设正方体棱长,根据//,得到异面直线与所成角,计算,可得结果.【详解】假设正方体棱长为1,因为//,所以异面直线与所成角即与所成角则角为如图,所以故答案为:【点睛】本题考查异面直线所成的角,属基础题.12、0.72【解析】

根据对立事件的概率公式即可求解.【详解】由题意,在该产品中任抽一件,“抽到优质品”与“抽到合格品或次品”是对立事件,所以在该产品中任抽一件,则抽到优质品的概率为.故答案为【点睛】本题主要考查对立事件的概率公式,熟记对立事件的概念及概率计算公式即可求解,属于基础题型.13、【解析】

根据奇偶性,先计算,再计算【详解】因为是定义在上的奇函数,所以.因为当时,所以.故答案为【点睛】本题考查了奇函数的性质,属于常考题型.14、10【解析】

由等差数列求和的性质可得,求得,再利用性质可得结果.【详解】因为,所以,所以,故故答案为10【点睛】本题考查了等差数列的性质,熟悉其性质是解题的关键,属于基础题.15、【解析】

由,知为圆的切线,所以两圆外离,即圆心距大于两半径之和,代入方程即可。【详解】由,知为圆的切线,即在圆上任意一点都可以向圆作切线,当两圆外离时,满足条件,所以,,即,化简,得:,解得:或.【点睛】和圆半径所成夹角为,即是圆的切线,两圆外离表示圆心距大于两半径之和。16、【解析】试题分析:的夹角,,,,.考点:向量的运算.【思路点晴】平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析;(3)见解析【解析】

(1)对递推关系进行变形得,从而证明是等比数列;(2)由(1)得,代入所证式子,再利用放缩法进行证明;(3)由(2)可知,对分偶数和奇数计论,放缩法和等比数列求和,即可证明结论.【详解】(1)∵,∴,且所以,数列是首项为,公比为3的等比数列.(2)由(1)可知当k是奇数时,(3)由(2)可知,当为偶数时,当为奇数时,所以.【点睛】本题考查等比数列的定义证明、等比数列前项和、不等式的放缩法证明,考查转化与化归思想、分类讨论思想,考查逻辑推理能力和运算求解能力,求解时注意讨论的突破口.18、(1)1;(2).【解析】

(1)由二倍角公式可化函数为,结合正弦函数的性质可得;(2)先求得的增区间,其中,此区间应包含,这样可得之间的不等关系,利用>0,得的范围,从而得,最终可得的最大值.【详解】解法1:(1)因为图象的相邻两条对称轴的距离为,所以的最小正周期为,所以正数.(2)因为,所以由得单调递增区间为,其中.由题设,于是,得因为,所以,,因为,所以,所以,正数的最大值为.解法2:(1)同解法1.(2)当时,因为在单调递增,因为,所以于是,解得,故正数的最大值为.【点睛】本题考查二倍角公式,考查三角函数的性质.解题关键是化函数为一个角的一个三角函数形式,即形式,然后结合正弦函数的性质求解.19、(1)2;(2)5;(3)空白栏中填5,【解析】

(1)根据频率等于小长方形的面积以及频率和为,得到关于的等式,求解出即可;(2)根据各组数据的组中值与频率的乘积之和得到对应的销售收益的平均值;(3)先填写空白栏数据,然后根据所给数据计算出,即可求解出回归直线方程.【详解】(1)设各小长方形的宽度为.由频率分布直方图中各小长方形的面积总和为1,可知,解得.故图中各小长方形的宽度为2.(2)由(1)知各小组依次是,其中点分别为对应的频率分别为故可估计平均值为.(3)由(2)可知空白栏中填5.由题意可知,,,根据公式,可求得,.所以所求的回归直线方程为.【点睛】本题考查频率分布直方图的实际应用以及回归直线方程的求法,难度一般.(1)频率分布直方图中,小矩形的面积代表该组数据的频率,所有小矩形面积之和为;(2)求解回归直线方程时,先求解出,然后根据回归直线方程过样本点的中心再求解出.20、(1)证明见详解,(2)证明见详解,(3)当为的中点时,平面平面BDE,证明见详解【解析】

(1)连接与相交于,可得,结合线面平行的判定定理即可证明平面(2)先证明和即可得出平面,然后可得,又,即可证明平面(3)当为的中点时,平面平面BDE,由已知易得,结合平面可得平面,进而根据面面垂直的判定定理得到结论.【详解】(1)如图,连接与相交于,则为的中点连接,又为的中点所以,又平面,平面所以平面(2)因为,所以四边形为正方形所以又因为平面,平面所以所以平面,所以又在直三棱柱中,所以平面(3)当为的中点时,平面平面BDE因为分别是的中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论