版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.各项不为零的等差数列中,,数列是等比数列,且,则()A.4 B.8 C.16 D.642.若直线过点,则此直线的倾斜角是()A. B. C. D.90。3.圆x-12+y-3A.1 B.2 C.2 D.34.已知某几何体的三视图如图所示,则该几何体的表面积为()A. B. C. D.5.若,则下列不等式不成立的是()A. B. C. D.6.已知,,则()A. B. C. D.7.在中,角、、所对的边分别为、、,若,则是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形8.下列说法不正确的是()A.圆柱的侧面展开图是一个矩形B.圆锥过轴的截面是一个等腰三角形C.平行于圆台底面的平面截圆台,截面是圆面D.直角三角形绕它的一边旋转一周形成的曲面围成的几何体是圆锥9.已知直线过点且与直线垂直,则该直线方程为()A. B.C. D.10.若直线y=x+b与曲线有公共点,则b的取值范围是A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11.设直线与圆C:x2+y2-2ay-2=0相交于A,B两点,若,则圆C的面积为________12.一艘轮船按照北偏西30°的方向以每小时21海里的速度航行,一个灯塔M原来在轮船的北偏东30°的方向,经过40分钟后,测得灯塔在轮船的北偏东75°的方向,则灯塔和轮船原来的距离是_____海里.13.已知中内角的对边分别是,,,,则为_____.14.已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为__________.15.直线过点且倾斜角为,直线过点且与垂直,则与的交点坐标为____16.已知,那么__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设数列,满足:,,,,.(1)写出数列的前三项;(2)证明:数列为常数列,并用表示;(3)证明:数列是等比数列,并求数列的通项公式.18.设数列的前项和为,已知(Ⅰ)求,并求数列的通项公式;(Ⅱ)求数列的前项和.19.已知向量(1)求函数的单调递减区间;(2)在中,,若,求的周长.20.已知是同一平面内的三个向量,其中.(1)若,求;(2)若与共线,求的值.21.已知数列满足,.(1)证明:数列为等差数列;(2)求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据等差数列性质可求得,再利用等比数列性质求得结果.【详解】由等差数列性质可得:又各项不为零,即由等比数列性质可得:本题正确选项:【点睛】本题考查等差数列、等比数列性质的应用,属于基础题.2、A【解析】
根据两点间斜率公式,可求得斜率.再由斜率与倾斜角关系即可求得直线的倾斜角.【详解】直线过点则直线的斜率设倾斜角为,根据斜率与倾斜角关系可得由直线倾斜角可得故选:A【点睛】本题考查了直线斜率的求法,斜率与倾斜角关系,属于基础题.3、C【解析】
先计算圆心到y轴的距离,再利用勾股定理得到弦长.【详解】x-12+y-32=2圆心到y轴的距离d=1弦长l=2r故答案选C【点睛】本题考查了圆的弦长公式,意在考查学生的计算能力.4、B【解析】
由三视图判断该几何体是有三条棱两两垂直是三棱锥,结合三视图的数据可得结果.【详解】由三视图可得该几何体是如图所示的三棱锥,其中AB,BC,BP两两垂直,且,则和的面积都是1,的面积为2,在中,,则的面积为,所以该几何体的表面积为,故选:B.【点睛】三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.5、A【解析】
由题得a<b<0,再利用作差比较法判断每一个选项的正误得解.【详解】由题得a<b<0,对于选项A,=,所以选项A错误.对于选项B,显然正确.对于选项C,,所以,所以选项C正确.对于选项D,,所以选项D正确.故答案为A【点睛】(1)本题主要考查不等式的基本性质和实数大小的比较,意在考查学生对这些知识的掌握水平和分析推理能力.(2)比差的一般步骤是:作差→变形(配方、因式分解、通分等)→与零比→下结论;比商的一般步骤是:作商→变形(配方、因式分解、通分等)→与1比→下结论.如果两个数都是正数,一般用比商,其它一般用比差.6、C【解析】
利用二倍角公式变形为,然后利用弦化切的思想求出的值,可得出角的值.【详解】,化简得,,则,,因此,,故选C.【点睛】本题考查二倍角公式的应用,考查弦切互化思想的应用,考查给值求角的问题,着重考查学生对三角恒等变换思想的应用能力,属于中等题.7、B【解析】
利用正弦定理得到答案.【详解】故答案为B【点睛】本题考查了正弦定理,意在考查学生的计算能力.8、D【解析】
根据旋转体的定义与性质,对选项中的命题分析、判断正误即可.【详解】A.圆柱的侧面展开图是一个矩形,正确;B.∵同一个圆锥的母线长相等,∴圆锥过轴的截面是一个等腰三角形,正确;C.根据平行于圆台底面的平面截圆台截面的性质可知:截面是圆面正确;D.直角三角形绕它的一条直角边旋转一周形成的曲面围成的几何体是圆锥,而直角三角形绕它的斜边旋转一周形成的曲面围成的几何体是两个对底面的两个圆锥,因此D不正确.故选:D.【点睛】本题考查了命题的真假判断,解题的关键是理解旋转体的定义与性质的应用问题,属于基础题.9、A【解析】
根据垂直关系求出直线斜率为,再由点斜式写出直线。【详解】由直线与直线垂直,可知直线斜率为,再由点斜式可知直线为:即.故选A.【点睛】本题考查两直线垂直,属于基础题。10、C【解析】
试题分析:如图所示:曲线即(x-2)2+(y-3)2=4(-1≤y≤3),表示以A(2,3)为圆心,以2为半径的一个半圆,直线与圆相切时,圆心到直线y=x+b的距离等于半径2,可得=2,∴b=1+2,b=1-2当直线过点(4,3)时,直线与曲线有两个公共点,此时b=-1结合图象可得≤b≤3故答案为C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】因为圆心坐标与半径分别为,所以圆心到直线的距离,则,解之得,所以圆的面积,应填答案.12、【解析】
画出示意图,利用正弦定理求解即可.【详解】如图所示:为灯塔,为轮船,,则在中有:,且海里,则解得:海里.【点睛】本题考查解三角形的实际应用,难度较易.关键是能通过题意将航海问题的示意图画出,然后选用正余弦定理去分析问题.13、【解析】
根据正弦定理即可.【详解】因为,,;所以,由正弦定理可得【点睛】本题主要考查了正弦定理:,属于基础题.14、8π【解析】分析:作出示意图,根据条件分别求出圆锥的母线,高,底面圆半径的长,代入公式计算即可.详解:如下图所示,又,解得,所以,所以该圆锥的体积为.点睛:此题为填空题的压轴题,实际上并不难,关键在于根据题意作出相应图形,利用平面几何知识求解相应线段长,代入圆锥体积公式即可.15、【解析】
通过题意,求出两直线方程,联立方程即可得到交点坐标.【详解】根据题意可知,因此直线为:,由于直线与垂直,故,所以,所以直线为:,联立两直线方程,可得交点.【点睛】本题主要考查直线方程的相关计算,难度不大.16、2017【解析】,故,由此得.【点睛】本题主要考查函数解析式的求解方法,考查等比数列前项和的计算公式.对于函数解析式的求法,有两种,一种是换元法,另一种的变换法.解析中运用的方法就是变换法,即将变换为含有的式子.也可以令.等比数列求和公式为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,(2)证明见解析,(3)证明见解析,【解析】
(1)利用递推关系式直接求解即可.(2)由整理化简得,从而可证出结论.(3)首先由递推关系式证出,再由对数的运算性质以及等比数列的定义即可证出.利用【详解】(1),,;(2)证明:,∴为常数列4,即,∴;(3),∴是以为首项,2为公比的等比数列,∴.【点睛】本题考查了由数列的递推关系式研究数列的性质、等比数列的定义,属于中档题.18、(1),;(2).【解析】试题分析:本题主要考查由求、等比数列的通项公式、等比数列的前n项和公式、错位相减法等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,由求,利用,分两部分求和,经判断得数列为等比数列;第二问,结合第一问的结论,利用错位相减法,结合等比数列的前n项和公式,计算化简.试题解析:(Ⅰ)时所以时,是首项为、公比为的等比数列,,.(Ⅱ)错位相减得:.考点:求、等比数列的通项公式、等比数列的前n项和公式、错位相减法.19、(1);(2)【解析】
(1)根据向量的数量积公式、二倍角公式及辅助角公式将化简为,然后利用三角函数的性质,即可求得的单调减区间;(2)由(1)及可求得,由可得,再结合余弦定理即可求得,进而可得的周长.【详解】解:(1)所以函数的单调递减区间为:(2),,又因在中,,,设的三个内角所对的边分别为,又,且,,则,所以的周长为.【点睛】本题考查平面向量的数量积公式,三角函数的二倍角公式、辅助角公式和三角函数的性质,以及利用正弦定理、余弦定理解三角形,考查理解辨析能力及求解运算能力,属于中档题.20、(1);(2)【解析】
(1)根据向量的坐标的运算法则和向量垂直的条件,以及模的定义即可求出.(2)根据向量共线的条件即可求出.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 租客有老人小孩租房合同(2篇)
- 巜赵州桥 课件
- 西南林业大学《茶艺》2023-2024学年第一学期期末试卷
- 西京学院《设计表现》2023-2024学年第一学期期末试卷
- 探究水温对金鱼呼吸的影响
- 新人教版五年级上册用字母表示数例3教程
- 西京学院《工程力学》2023-2024学年第一学期期末试卷
- 西京学院《安装工程计量与计价》2021-2022学年第一学期期末试卷
- 西华师范大学《数字电子技术基础》2022-2023学年期末试卷
- 描写眼睛 课件
- 《传感器原理及应用》全套教学课件
- 文物与博物馆学课件
- 高精度时间同步及定位技术应用白皮书
- 短暂性脑缺血发作培训课件
- 新版统编版三年级上册语文《大自然的声音》课件(第二课时)
- 首件验收报验表
- 小学科学教育科学三年级上册空气《风的成因》教案
- 四年级上册数学课件 《平行与垂直》 人教版(共11张PPT)
- 出砂机理及防砂
- 火炬系统水封罐计算
- 奥托尼克斯计米器使用说明书
评论
0/150
提交评论