




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,且,则实数的值为()A.2 B. C.3 D.2.若圆与圆相切,则实数()A.9 B.-11 C.-11或-9 D.9或-113.已知函数与的图象上存在关于轴对称的点,则实数的取值范围是().A. B. C. D.4.设等比数列的公比为,其前项和为,前项之积为,并且满足条件:,,,下列结论中正确的是()A. B.C.是数列中的最大值 D.数列无最小值5.若,,且,则与的夹角是()A. B. C. D.6.若直线与圆相切,则的值为A.1 B. C. D.7.函数的简图是()A. B. C. D.8.关于x的不等式的解集中,恰有3个整数,则a的取值范围是()A. B. C. D.(4,5)9.已知等差数列中,若,则取最小值时的()A.9 B.8 C.7 D.610.已知函数在区间上有最大值,则实数的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知原点O(0,0),则点O到直线x+y+2=0的距离等于.12.若实数满足不等式组则的最小值是_____.13.在中,已知角的对边分别为,且,,,若有两解,则的取值范围是__________.14.已知向量满足,则15.已知函数y=sin(x+)(>0,-<)的图象如图所示,则=________________.16.函数的反函数为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线l经过点,并且其倾斜角等于直线的倾斜角的2倍.求直线l的方程.18.如图,在四棱锥中,,底面为平行四边形,平面.()求证:平面;()若,,,求三棱锥的体积;()设平面平面直线,试判断与的位置关系,并证明.19.的内角的对边分别为,已知.(1)求角;(2)若,求的面积.20.已知函数,其中.解关于x的不等式;求a的取值范围,使在区间上是单调减函数.21.已知定义域为的函数是奇函数(Ⅰ)求值;(Ⅱ)判断并证明该函数在定义域上的单调性;(Ⅲ)若对任意的,不等式恒成立,求实数的取值范围;(Ⅳ)设关于的函数有零点,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据二角和与差的正弦公式化简,,再切化弦,即可求解.【详解】由题意又解得故选:【点睛】本题考查两角和与差的正弦公式,属于基础题.2、D【解析】
分别讨论两圆内切或外切,圆心距和半径之间的关系即可得出结果.【详解】圆的圆心坐标为,半径;圆的圆心坐标为,半径,讨论:当圆与圆外切时,,所以;当圆与圆内切时,,所以,综上,或.【点睛】本题主要考查圆与圆位置关系,由两圆相切求参数的值,属于基础题型.3、A【解析】若函数f(x)=a﹣x2(1≤x≤2)与g(x)=2x+1的图象上存在关于x轴对称的点,则方程a﹣x2=﹣(2x+1)⇔a=x2﹣2x﹣1在区间[1,2]上有解,令g(x)=x2﹣2x﹣1,1≤x≤2,由g(x)=x2﹣2x﹣1的图象是开口朝上,且以直线x=1为对称轴的抛物线,故当x=1时,g(x)取最小值﹣2,当x=2时,函数取最大值﹣1,故a∈[﹣2,﹣1],故选:A.点睛:图像上存在关于轴对称的点,即方程a﹣x2=﹣(2x+1)⇔a=x2﹣2x﹣1在区间[1,2]上有解,转化为方程有解求参的问题,变量分离,画出函数图像,使得函数图像和常函数图像有交点即可;这是解决方程有解,图像有交点,函数有零点的常见方法。4、D【解析】
根据题干条件可得到数列>1,0<q<1,数列之和越加越大,故A错误;根据等比数列性质得到进而得到B正确;由前n项积的性质得到是数列中的最大值;从开始后面的值越来越小,但是都是大于0的,故没有最小值.【详解】因为条件:,,,可知数列>1,0<q<1,根据等比数列的首项大于0,公比大于0,得到数列项均为正,故前n项和,项数越多,和越大,故A不正确;因为根据数列性质得到,故B不对;前项之积为,所有大于等于1的项乘到一起,能够取得最大值,故是数列中的最大值.数列无最小值,因为从开始后面的值越来越小,但是都是大于0的,故没有最小值.故D正确.故答案为D.【点睛】本题考查了等比数列的通项公式及其性质、递推关系、不等式的解法,考查了推理能力与计算能力,属于中档题.5、B【解析】
根据相互垂直的向量数量积为零,求出与的夹角.【详解】由题有,即,故,因为,所以.故选:B.【点睛】本题考查了向量的数量积运算,向量夹角的求解,属于基础题.6、D【解析】圆的圆心坐标为,半径为1,∵直线与圆相切,∴圆心到直线的距离,即,解得,故选D.7、D【解析】
变形为,求出周期排除两个选项,再由函数值正负排除一个,最后一个为正确选项.【详解】函数的周期是,排除AB,又时,,排除C.只有D满足.故选:D.【点睛】本题考查由函数解析式选图象,可通过研究函数的性质如单调性、奇偶性、周期性、对称性等排除某些选项,还可求出特殊值,特殊点,函数值的正负,函数值的变化趋势排除一些选项,从而得出正确选项.8、A【解析】
不等式等价转化为,当时,得,当时,得,由此根据解集中恰有3个整数解,能求出的取值范围。【详解】关于的不等式,不等式可变形为,当时,得,此时解集中的整数为2,3,4,则;当时,得,,此时解集中的整数为-2,-1,0,则故a的取值范围是,选:A。【点睛】本题难点在于分类讨论解含参的二次不等式,由于二次不等式对应的二次方程的根大小不确定,所以要对和1的大小进行分类讨论。其次在观察的范围的时候要注意范围的端点能否取到,防止选择错误的B选项。9、C【解析】
是等差数列,先根据已知求出首项和公差,再表示出,由的最小值确定n。【详解】由题得,,解得,那么,当n=7时,取到最小值-49.故选:C【点睛】本题考查等差数列前n项和,是基础题。10、B【解析】因为,所以由题设在只有一个零点且单调递减,则问题转化为,即,应选答案B.点睛:解答本题的关键是如何借助题设条件建立不等式组,这是解答本题的难点,也是解答好本题的突破口,如何通过解不等式使得问题巧妙获解.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由点到直线的距离公式得:点O到直线x+y+2=0的距离等于,故答案为.12、4【解析】试题分析:由于根据题意x,y满足的关系式,作出可行域,当目标函数z=2x+3y在边界点(2,0)处取到最小值z=2×2+3×0=4,故答案为4.考点:本试题主要考查了线性规划的最优解的运用.点评:解决该试题的关键是解决线性规划的小题时,常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.13、【解析】
利用正弦定理得到,再根据有两解得到,计算得到答案.【详解】由正弦定理得:若有两解:故答案为【点睛】本题考查了正弦定理,有两解,意在考查学生的计算能力.14、【解析】试题分析:=,又,,代入可得8,所以考点:向量的数量积运算.15、【解析】
由图可知,16、【解析】
首先求出在区间的值域,再由表示的含义,得到所求函数的反函数.【详解】因为,所以,.所以的反函数是.故答案为:【点睛】本题主要考查反函数定义,同时考查了三角函数的值域问题,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】
求出直线的倾斜角,可得所求直线的倾斜角,从而可得斜率,再利用点斜式可得结果.【详解】因为直线的斜率为,所以其倾斜角为30°,所以,所求直线的倾斜角为60°故所求直线的斜率为,又所求直线经过点,所以其方程为,即,故答案为:.【点睛】本题主要考查直线的斜率与倾斜角,考查了直线点斜式方程的应用,意在考查对基础知识的掌握情况,属于基础题.18、(1)证明见解析;(2);(3),证明见解析.【解析】
(1)根据题意得到,,面从而得到线线垂直;(2)由图形特点得到面,代入数据可得到体积值;(3)证明平面,利用平面平面,可得..【详解】()证明:∵面,面,∴,又∵,面,面,,∴面,()∵底面为平行四边形,面,∴面,∴.().证明:∵底面为平行四边形,∴,∵面,面,∴面,又∵面面,面,∴.19、(1);(2)【解析】
(1)首先利用正弦定理的边角互化,可将等式化简为,再利用,可知,最后化简求值;(2)利用余弦定理可求得,代入求面积.【详解】(1)由已知以及余弦定理得:所以,(2)由题知,【点睛】本题第一问考查了正弦定理,第二问考查了余弦定理和面积公式,当一个式子有边也有角时,一般可通过正弦定理边角互化转化为三角函数恒等变形问题,而对于余弦定理与三角形面积的关系时,需重视的变形使用.20、(1)见解析;(2).【解析】
由题意可得,对a讨论,可得所求解集;求得,由反比例函数的单调性,可得,解不等式即可得到所求范围.【详解】的不等式,即为,即为,当时,解集为;当时,解集为;当时,解集为,;,由在区间上是单调减函数,可得,解得.即a的范围是.【点睛】本题考查分式不等式的解法,注意运用分类讨论思想方法,考查函数的单调性的判断和运用,考查运算能力,属于基础题.21、(Ⅰ);(Ⅱ)答案见解析;(Ⅲ)(Ⅳ).【解析】试题分析:(1)根据奇函数性质得,解得值;(2)根据单调性定义,作差通分,根据指数函数单调性确定因子符号,最后根据差的符号确定单调性(3)根据奇偶性以及单调性将不等式化为一元二次不等式恒成立问题,利用判别式求实数的取值范围;(4)根据奇偶性以及单调性将方程转化为一元二次方程有解问题,根据二次函数图像与性质求值域,即得实数的取值范围.试题解析:(Ⅰ)由题设,需,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广州科技职业技术大学《建筑学》2023-2024学年第二学期期末试卷
- 温州肯恩大学《中学物理专题训练与研究》2023-2024学年第二学期期末试卷
- 2025河北省安全员考试题库及答案
- 德宏职业学院《新媒体概论》2023-2024学年第二学期期末试卷
- 2024-2025学年湖南省五市十校教研教改共同体高一上学期12月月考历史试卷
- 山东石油化工学院《工程结构反分析理论》2023-2024学年第二学期期末试卷
- 德宏职业学院《国际法与当代中国》2023-2024学年第二学期期末试卷
- 广东茂名农林科技职业学院《互联网+大学生创新创业设计与实践》2023-2024学年第二学期期末试卷
- 2025年山西省建筑安全员《A证》考试题库
- 桂林山水职业学院《幼儿教师职业道德与专业发展》2023-2024学年第二学期期末试卷
- (附件条款版)电话销售员员工保密协议
- 2024年养老护理员(三级)资格理论考试题库(浓缩500题)
- 铁路专用线设计规范(试行)(TB 10638-2019)
- 潍坊环境工程职业学院单招职业技能测试参考试题库(含答案)
- 2024年山东司法警官职业学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 物业客服课件培训模板
- 人教版PEP四年级英语下册全册教学设计表格教案
- 制造业面临的挑战与发展对策
- 高速公路绿化工程施工
- 发展汉语-初级读写-第一课-你好
- 化工公司原址污染场地污染土壤治理修复方案
评论
0/150
提交评论