




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线经过点,且与直线垂直,则的方程为()A. B.C. D.2.已知数列{an}满足a1=1,an+1=pan+q,且a2=3,a4=15,则p,q的值为()A. B. C.或 D.以上都不对3.如图是某几何体的三视图,则该几何体的表面积为()A. B. C. D.4.已知,函数,存在常数,使得为偶函数,则可能的值为()A. B. C. D.5.截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱 B.圆锥 C.球 D.圆台6.若,则()A. B. C. D.7.如图,在中,,,若,则()A. B. C. D.8.若直线与直线平行,则的值为()A.1 B.﹣1 C.±1 D.09.函数的最小正周期为()A. B. C. D.10.已知直线与直线平行,则实数k的值为()A.-2 B.2 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,且,则的值为________.12.若实数满足不等式组则的最小值是_____.13.已知,则________.14.如图记录了甲乙两名篮球运动员练习投篮时,进行的5组100次投篮的命中数,若这两组数据的中位数相等,平均数也相等,则______,_________.15.当时,不等式成立,则实数k的取值范围是______________.16.在轴上有一点,点到点与点的距离相等,则点坐标为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=x2(1)写出函数g(x)的解析式;(2)若直线y=ax+1与曲线y=g(x)有三个不同的交点,求a的取值范围;(3)若直线y=ax+b与曲线y=f(x)在x∈[-2,1]内有交点,求(a-1)218.在△中,,,且.(Ⅰ)求的值;(Ⅱ)求的大小.19.已知数列的首项.(1)证明:数列是等比数列;(2)数列的前项和.20.如图,在多面体中,平面平面,四边形为正方形,四边形为梯形,且,,.(Ⅰ)求证:平面;(Ⅱ)求证:平面;(Ⅲ)在线段上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.21.已知,且.(1)求的值;(2)求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
设直线的方程为,代入点(1,0)的坐标即得解.【详解】设直线的方程为,由题得.所以直线的方程为.故选D【点睛】本题主要考查直线方程的求法,意在考查学生对该知识的理解掌握水平,属于基础题.2、C【解析】
根据数列的递推公式得、建立方程组求得.【详解】由已知得:所以解得:或.故选C.【点睛】本题考查数列的递推公式,属于基础题.3、C【解析】
根据三视图还原直观图,根据长度关系计算表面积得到答案.【详解】根据三视图还原直观图,如图所示:几何体的表面积为:故答案选C【点睛】本题考查了三视图,将三视图转化为直观图是解题的关键.4、C【解析】
直接利用三角函数性质的应用和函数的奇偶性的应用求出结果.【详解】解:由函数,存在常数,使得为偶函数,则,由于函数为偶函数,故,所以,当时,.故选:C.【点睛】本题考查三角函数的性质的应用,属于基础题.5、C【解析】
试题分析:圆柱截面可能是矩形;圆锥截面可能是三角形;圆台截面可能是梯形,该几何体显然是球,故选C.6、D【解析】
将指数形式化为对数形式可得,再利用换底公式即可.【详解】解:因为,所以,故选:D.【点睛】本题考查了指数与对数的互化,重点考查了换底公式,属基础题.7、B【解析】∵∴又,∴故选B.8、B【解析】
两直线平行表示斜率相同或者都垂直x轴,即。【详解】当时,两直线分别为:与直线,不平行,当时,直线化为:直线化为:,两直线平行,所以,,解得:,当时,两直线重合,不符,所以,【点睛】直线平行即表示斜率相同,且截距不同,如果截距相同则表示同一条直线。9、D【解析】,函数的最小正周期为,选.【点睛】求三角函数的最小正周期,首先要利用三角公式进行恒等变形,化简函数解析式,把函数解析式化为的形式,然后利用周期公式求出最小正周期,另外还要注意函数的定义域.10、A【解析】
由两直线平行的可得:,运算即可得解.【详解】解:由两直线平行的判定可得:,解得,故选:A.【点睛】本题考查利用两直线平行求参数,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用共线向量的坐标表示求出的值,可计算出向量的坐标,然后利用向量的模长公式可求出的值.【详解】,,且,,解得,,则,因此,,故答案为:.【点睛】本题考查利用共线向量的坐标表示求参数,同时也考查了向量模的坐标运算,考查计算能力,属于基础题.12、4【解析】试题分析:由于根据题意x,y满足的关系式,作出可行域,当目标函数z=2x+3y在边界点(2,0)处取到最小值z=2×2+3×0=4,故答案为4.考点:本试题主要考查了线性规划的最优解的运用.点评:解决该试题的关键是解决线性规划的小题时,常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.13、【解析】
由可得,然后用正弦的和差公式展开,然后将条件代入即可求出原式的值【详解】因为所以故答案为:【点睛】本题考查的三角恒等变换,解决此类问题时要善于发现角之间的关系.14、3.5.【解析】
根据茎叶图,将两组数据按照从小到大顺序排列,由中位数和平均数相等,即可解得的值.【详解】甲乙两组数据的中位数相等,平均数也相等对于甲组将数据按照从小到大顺序排列后可知,中位数为65.所以乙组中位数也为65.根据乙组数据可得则由两组的平均数相等,可知两组的总数也相等,即解得故答案为:;【点睛】本题考查了茎叶图的简单应用,由茎叶图求中位数和平均数,属于基础题.15、k∈(﹣∞,1]【解析】
此题先把常数k分离出来,再构造成再利用导数求函数的最小值,使其最小值大于等于k即可.【详解】由题意知:∵当0≤x≤1时(1)当x=0时,不等式恒成立k∈R(2)当0<x≤1时,不等式可化为要使不等式恒成立,则k成立令f(x)x∈(0,1]即f'(x)再令g(x)g'(x)∵当0<x≤1时,g'(x)<0∴g(x)为单调递减函数∴g(x)<g(0)=0∴f'(x)<0即函数f(x)为单调递减函数所以f(x)min=f(1)=1即k≤1综上所述,由(1)(2)得k≤1故答案为:k∈(﹣∞,1].【点睛】本题主要考查利用导数求函数的最值,属于中档题型.16、【解析】
设点的坐标,根据空间两点距离公式列方程求解.【详解】由题:设,点到点与点的距离相等,所以,,,解得:,所以点的坐标为.故答案为:【点睛】此题考查空间之间坐标系中两点的距离公式,根据公式列方程求解点的坐标,关键在于准确辨析正确计算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)g(x)=0,-x2【解析】
(1)先分类讨论求出|f(x)|的解析式,即得函数g(x)的解析式;(2)当a=0时,直线y=1与曲线y=g(x)只有2个交点,不符题意.当a≠0时,由题意得,直线y=ax+1与曲线y=g(x)在x⩽-2或x⩾1内必有一个交点,且在-2<x<1的范围内有两个交点.由y=ax+1,y=-x2-x+2,-2<x<1,消去y得x2+(a+1)x-1=0.令φ(x)=x2+(a+1)x-1,写出a应满足条件解得;(3)由方程组y=ax+b,y=x2+x-2,消去y得x2+(1-a)x-2-b=0.由题意知方程在[-2,1]内至少有一个实根,设两根为x【详解】(1)当f(x)=x2+x-2≥0,得x≥1或x≤-2当f(x)=x2+x-2<0,得∴g(x)=(2)当a=0时,直线y=1与曲线y=g(x)只有2个交点,不符题意.当a≠0时,由题意得,直线y=ax+1与曲线y=g(x)在x≤-2或x≥1内必有一个交点,且在-2<x<1的范围内有两个交点.由y=ax+1y=-x2-x+2,-2<x<1,消去令φ(x)=x2+(a+1)x-1a≠0Δ=解得-1<a<0或0<a<12,所以a(3)由方程组y=ax+by=x2+x-2,消去由题意知方程在[-2,1]内至少有一个实根,设两根为x1不妨设x1∈[-2,1],x2∈R∴(a-1)==≥2×1=2当且仅当x1所以(a-1)2+(b+3)【点睛】本题考查了函数与方程,涉及了分段函数、零点、韦达定理等内容,综合性较强,属于难题.18、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)通过正弦定理易得,代入即可.(Ⅱ)三边长知道通过余弦定理即可求得的大小.【详解】(Ⅰ)因为,所以由正弦定理可得.因为,所以.(Ⅱ)由余弦定理.因为三角形内角,所以.【点睛】此题考查正弦定理和余弦定理,记住公式很容易求解,属于简单题目.19、(1)证明见解析;(2).【解析】试题分析:(1)对两边取倒数得,化简得,所以数列是等比数列;(2)由(1)是等比数列.,求得,利用错位相减法和分组求和法求得前项和.试题解析:(1),又,数列是以为首项,为公比的等比数列.(2)由(1)知,,即,设,①则,②由①-②得,.又.数列的前项和.考点:配凑法求通项,错位相减法.20、(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析【解析】
(Ⅰ)转化为证明;(Ⅱ)转化为证明,;(Ⅲ)根据线面平行的性质定理.【详解】(Ⅰ)因为四边形为正方形,所以,由于平面,平面,所以平面.(Ⅱ)因为四边形为正方形,所以.平面平面,平面平面,所以平面.所以.取中点,连接.由,,,可得四边形为正方形.所以.所以.所以.因为,所以平面.(Ⅲ)存在,当为的中点时,平面,此时.证明如下:连接交于点,由于四边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 应急供电点管理制度
- 强化人财物管理制度
- 影视体验馆管理制度
- 微机实训室管理制度
- 心理课目标管理制度
- 快递员保安管理制度
- 怎样做好群管理制度
- 总工办现场管理制度
- 惠分期风险管理制度
- 戏曲排练厅管理制度
- 学术论文写作规范与技巧课件
- 生物高中-基于大数据分析的精准教学课件
- 焊接热处理工艺卡
- 信任五环(用友营销技巧)课件
- 2022年广东省深圳市中考化学真题试卷
- GB∕T 8110-2020 熔化极气体保护电弧焊用非合金钢及细晶粒钢实心焊丝
- 公共政策学(第三版)-课件
- 齐鲁医学Lisfranc-损伤
- 大型钢网架整体提升施工工法
- 干熄焦炉内固_气流动与传热数值模拟毕业论文
- 公司股东变更登记申请书(一变一)
评论
0/150
提交评论