




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“”是“函数,有反函数”的()A.充分非必要条件 B.必要非充分条件 C.充要条件 D.即非充分又非必要条件2.已知圆锥的侧面展开图是一个半径为6,圆心角为的扇形,则圆锥的高为()A. B. C. D.53.在区间上随机取一个数,使得的概率为()A. B. C. D.4.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有一点,则()A. B. C. D.5.直线2x+y+4=0与圆x+22+y+32=5A.255 B.4556.函数是().A.周期为的偶函数 B.周期为的奇函数C.周期为的偶函数 D.周期为奇函数7.已知等比数列中,,且有,则()A. B. C. D.8.已知向量,,若,则的值为()A. B.1 C. D.9.的值()A.小于0 B.大于0 C.等于0 D.不小于010.某校有高一学生人,高二学生人,高三学生人,现教育局督导组欲用分层抽样的方法抽取名学生进行问卷调查,则下列判断正确的是()A.高一学生被抽到的可能性最大 B.高二学生被抽到的可能性最大C.高三学生被抽到的可能性最大 D.每位学生被抽到的可能性相等二、填空题:本大题共6小题,每小题5分,共30分。11.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是:①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点.在上面结论中,正确结论的编号是________.(写出所有正确结论的编号)12.在半径为的球中有一内接正四棱柱(底面是正方形,侧棱垂直底面),当该正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差是__________.13.夏季某座高山上的温度从山脚起每升高100米降低0.8度,若山脚的温度是36度,山顶的温度是20度,则这座山的高度是________米14.已知,则的值是______.15.函数的反函数是______.16.直线与圆的位置关系是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,,点D在边AB上,,且.(1)若的面积为,求CD;(2)设,若,求证:.18.已知在四棱锥中,底面是矩形,平面,,分别是,的中点,与平面所成的角的正切值是;(1)求证:平面;(2)求二面角的正切值.19.在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b-c)sinB+(2c-b)sinC..(1)求角A的大小;(2)若sinB+sinC=3,试判断△ABC的形状.20.某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了人,回答问题统计结果如图表所示.组号
分组
回答正确
的人数
回答正确的人数
占本组的概率
第1组
5
0.5
第2组
0.9
第3组
27
第4组
0.36
第5组
3
(Ⅰ)分别求出的值;(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组应各抽取多少人?(Ⅲ)在(Ⅱ)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.21.设a为实数,函数,(1)若,求不等式的解集;(2)是否存在实数a,使得函数在区间上既有最大值又有最小值?若存在,求出实数a的取值范围;若不存在,请说明理由;(3)写出函数在R上的零点个数(不必写出过程).
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
函数,有反函数,则函数,上具有单调性,可得,即可判断出结论.【详解】函数,有反函数,则函数,上具有单调性,.是的真子集,“”是“函数,有反函数”的充分不必要条件.故选:A.【点睛】本题考查了二次函数的单调性、反函数、充分条件与必要条件的判定方法,考查推理能力与计算能力,同时考查函数与方程思想、数形结合思想.2、C【解析】
利用扇形的弧长为底面圆的周长求出后可求高.【详解】因为侧面展开图是一个半径为6,圆心角为的扇形,所以圆锥的母线长为6,设其底面半径为,则,所以,所以圆锥的高为,选C【点睛】圆锥的侧面展开图是扇形,如果圆锥的母线长为,底面圆的半径长为,则该扇形的圆心角的弧度数为.3、A【解析】则,故概率为.4、D【解析】
根据任意角三角函数定义可求得;根据诱导公式可将所求式子化为,代入求得结果.【详解】由得:本题正确选项:【点睛】本题考查任意角三角函数值的求解、利用诱导公式化简求值问题;关键是能够通过角的终边上的点求得角的三角函数值.5、C【解析】
先求出圆心到直线的距离d,然后根据圆的弦长公式l=2r【详解】由题意得,圆x+22+y+32=5圆心-2,-3到直线2x+y+4=0的距离为d=|2×(-2)-3+4|∴MN=2故选C.【点睛】求圆的弦长有两种方法:一是求出直线和圆的交点坐标,然后利用两点间的距离公式求解;二是利用几何法求解,即求出圆心到直线的距离,在由半径、弦心距和半弦长构成的直角三角形中运用勾股定理求解,此时不要忘了求出的是半弦长.在具体的求解中一般利用几何法,以减少运算、增强解题的直观性.6、B【解析】因,故是奇函数,且最小正周期是,即,应选答案B.点睛:解答本题时充分运用题设条件,先借助二倍角的余弦公式的变形,将函数的形式进行化简,然后再验证函数的奇偶性与周期性,从而获得问题的答案.7、A【解析】,,所以选A8、B【解析】
直接利用向量的数量积列出方程求解即可.【详解】向量,,若,可得2﹣2=0,解得=1,故选B.【点睛】本题考查向量的数量积的应用,考查计算能力,属于基础题.9、A【解析】
确定各个角的范围,由三角函数定义可确定正负.【详解】∵,∴,,,∴.故选:A.【点睛】本题考查各象限角三角函数的符号,掌握三角函数定义是解题关键.10、D【解析】
根据分层抽样是等可能的选出正确答案.【详解】由于分层抽样是等可能的,所以每位学生被抽到的可能性相等,故选D.【点睛】本小题主要考查随机抽样的公平性,考查分层抽样的知识,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、①②④【解析】用正方体ABCD-A1B1C1D1实例说明A1D1与BC1在平面ABCD上的投影互相平行,AB1与BC1在平面ABCD上的投影互相垂直,BC1与DD1在平面ABCD上的投影是一条直线及其外一点.故①②④正确.12、【解析】
根据正四棱柱外接球半径的求解方法可得到正四棱柱底面边长和高的关系,利用基本不等式得到,得到侧面积最大值为;根据球的表面积公式求得球的表面积,作差得到结果.【详解】设球内接正四棱柱的底面边长为,高为则球的半径:正四棱柱的侧面积:球的表面积:当正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差为:本题正确结果:【点睛】本题考查多面体的外接球的相关问题的求解,关键是能够根据外接球半径构造出关于正棱柱底面边长和高的关系式,利用基本不等式求得最值;其中还涉及到球的表面积公式的应用.13、2000【解析】
由题意得,温度下降了,再求出这个温度是由几段100米得出来的,最后乘以100即可.【详解】由题意得,这座山的高度为:米故答案为:2000【点睛】本题结合实际问题考查有理数的混合运算,解题关键是温度差里有几个0.8,属于基础题.14、【解析】
根据两角差的正切公式即可求解【详解】故答案为:【点睛】本题考查两角差的正切公式的用法,属于基础题15、,【解析】
求出函数的值域作为其反函数的定义域,再由求出其反函数的解析式,综合可得出答案.【详解】,则,由可得,,因此,函数的反函数是,.故答案为:,.【点睛】本题考查反三角函数的求解,解题时注意求出原函数的值域作为其反函数的定义域,考查计算能力,属于中等题.16、相交【解析】
由直线系方程可得直线过定点,进而可得点在圆内部,即可得到位置关系.【详解】化直线方程为,令,解得,所以直线过定点,又圆的圆心坐标为,半径,而,所以点在圆内部,故直线与圆的位置关系是相交.故答案为:相交.【点睛】本题考查直线与圆位置关系的判断,考查直线系方程的应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】
(1)直接利用三角形的面积公式求得,再由余弦定理列方程求出结果;(2)两次利用正弦定理,结合两角差的正弦公式、二倍角的正弦公式进行恒等变换求出结果.【详解】(1)因为,即,又因为,,所以.在△中,由余弦定理得,即,解得.(2)在△中,,因为,则,又,由正弦定理,有,所以.在△中,,由正弦定理得,,即,化简得展开并整理得【点睛】以三角形为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公式,一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.18、(1)见证明;(2)【解析】
(1)取的中点,连接,通过证明四边形是平行四边形,证得,从而证得平面.(2)连接,证得为与平面所成角.根据的值求得的长,作出二面角的平面角并证明,解直角三角形求得二面角的正切值.【详解】(1)证明:取的中点,连接.∵是中点∴又是的中点,∴∴,从而四边形是平行四边形,故又平面,平面,∴(2)∵平面,∴是在平面内的射影为与平面所成角,四边形为矩形,∵,∴,∴过点作交的延长线于,连接,∵平面据三垂线定理知.∴是二面角的平面角易知道为等腰直角三角形,∴∴=∴二面角的正切值为【点睛】本小题主要考查线面平行的证明,考查线面角的定义和应用,考查面面角的正切值的求法,考查逻辑推理能力和空间想象能力,属于中档题.19、(1)60∘【解析】
(1)利用余弦定理表示出cosA,然后根据正弦定理化简已知的等式,整理后代入表示出的cosA中,化简后求出cosA的值,由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数;(2)由A为60°,利用三角形的内角和定理得到B+C的度数,用B表示出C,代入已知的sinB+sinC=3中,利用两角和与差的正弦函数公式及特殊角的三角函数值化简,整理后再利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,由B的范围,求出这个角的范围,利用特殊角的三角函数值求出B为60°,可得出三角形ABC三个角相等,都为60°,则三角形ABC为等边三角形.【详解】(1)由2asinA=(2b-c)sinB+(2c-b)sinC,得2a2=(2b-c)b+(2c-b)c,即bc=b2+c2-a2,∴cosA=b2+c(2)∵A+B+C=180°,∴B+C=180°-60°=120°,由sinB+sinC=3,得sinB+sin(120°-B)=3,∴sinB+sin120°cosB-cos120°sinB=3,∴32sinB+32cosB=3,即sin(∵0°<B<120°,∴30°<B+30°<150°,∴B+30°=90°,B=60°,∴A=B=C=60°,△ABC为等边三角形.【点睛】此题考查了三角形形状的判断,正弦、余弦定理,两角和与差的正弦函数公式,等边三角形的判定,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.20、(Ⅰ);(Ⅱ)第2组抽人;第3组抽3人;第4组抽1人;(III).【解析】
(Ⅰ)由频率表中第1组数据可知,第1组总人数为,再结合频率分布直方图可知∴=100×0.020×10×0.9=18,b=100×0.025×10×0.36=9,,(Ⅱ)第2,3,4组中回答正确的共有54人.∴利用分层抽样在54人中抽取6人,每组分别抽取的人数为:第2组:人,第3组:人,第4组:人.(Ⅲ)设第2组的2人为、,第3组的3人为、、,第4组的1人为,则从6人中抽2人所有可能的结果有:,,,,,,,,,,,,,,,共15个基本事件,其中第2组至少有1人被抽中的有,,,,,,,,这9个基本事件.∴第2组至少有1人获得幸运奖的概率为本题考查分层抽样方法、统计基础知识与等可能事件的概率.注意等可能事件中的基本事件数的准确性.21、(1)(2)不存在这样的实数,理由见解析(3)见解析【解析】
(1)代入的值,通过讨论的范围,求出不等式的解集即可;(2)通过讨论的范围,求出函数的单调区间,再求出函数的最值,得到关于的不等式组,解出并判断即可;(3)通过讨论的范围,判断函数的零点个数即可【详解】(1)当时,,则当时,,解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 共同经营货车合同范本
- 个人法制宣传教育工作总结
- 个人工作岗位调动申请书
- 业主授权委托书
- 个人之间合伙合同范本
- 企业餐厅布置租房合同范本
- 买卖房合同范本简易
- 原材供货合同范本
- 与律师事务所签署合同范本
- 前程无忧合同范本
- 华东师范大学《外国人文经典(下)》2021-2022学年第一学期期末试卷
- 第17讲 新高考新结构命题下的导数解答题综合训练(教师版)-2025版高中数学一轮复习考点帮
- 人美版初中美术八年级下册教案-全册
- 2024年度无人机飞行培训合同
- 倒闸操作培训
- 幼儿园家长会安全保健
- (完整版)小升初英语语法总结+练习题及答案
- 初中信息技术-认识计算机-课件
- 2024年《工会法》知识竞赛题库及答案
- DBJ33-T 1325-2024 螺栓连接全装配混凝土墙板结构技术规程
- 《体育游戏》课件
评论
0/150
提交评论