2023届安徽高中教科研联盟数学高一第二学期期末统考试题含解析_第1页
2023届安徽高中教科研联盟数学高一第二学期期末统考试题含解析_第2页
2023届安徽高中教科研联盟数学高一第二学期期末统考试题含解析_第3页
2023届安徽高中教科研联盟数学高一第二学期期末统考试题含解析_第4页
2023届安徽高中教科研联盟数学高一第二学期期末统考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,则此三角形解的情况是()A.一解 B.两解 C.一解或两解 D.无解2.若关于x的方程sinx+cosx-2A.(2,94] B.[2,53.已知,,O是坐标原点,则()A. B. C. D.4.(2017新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A. B.C. D.5.函数的最大值是()A. B. C. D.6.已知,则向量与向量的夹角是()A. B. C. D.7.某中学举行英语演讲比赛,如图是七位评委为某位学生打出分数的茎叶图,去掉一个最高分和一个最低分,所剩数据的中位数和平均数分别为()A.84,85 B.85,84 C.84,85.2 D.86,858.已知角的终边经过点,则=()A. B. C. D.9.对于空间中的两条直线,和一个平面,下列结论正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则10.在直角中,,线段上有一点,线段上有一点,且,若,则()A.1 B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,且为第三象限角,则的值等于______;12.已知直线平分圆的周长,则实数________.13.各项均为实数的等比数列的前项和为,已知成等差数列,则数列的公比为________.14.下列命题:①函数的最小正周期是;②在直角坐标系中,点,将向量绕点逆时针旋转得到向量,则点的坐标是;③在同一直角坐标系中,函数的图象和函数的图象有两个公共点;④函数在上是增函数.其中,正确的命题是________(填正确命题的序号).15.已知数列的通项公式为,的前项和为,则___________.16.已知等差数列的前项和为,若,则=_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.“中国人均读书本(包括网络文学和教科书),比韩国的本、法国的本、日本的本、犹太人的本少得多,是世界上人均读书最少的国家”,这个论断被各种媒体反复引用.出现这样统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天名读书者进行调查,将他们的年龄分成段:,,,,,后得到如图所示的频率分布直方图.问:(1)估计在这名读书者中年龄分布在的人数;(2)求这名读书者年龄的平均数和中位数;(3)若从年龄在的读书者中任取名,求这两名读书者年龄在的人数恰为的概率.18.求适合下列条件的直线方程:经过点,倾斜角等于直线的倾斜角的倍;经过点,且与两坐标轴围成一个等腰直角三角形。19.求过点且与圆相切的直线方程.20.在中,已知,,且,求.21.如图,在三棱锥中,平面平面,,点,,分别为线段,,的中点,点是线段的中点.求证:(1)平面;(2).

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由题意知,,,,∴,如图:∵,∴此三角形的解的情况有2种,故选B.2、D【解析】

换元设t=sinx+cos【详解】sinx+cosx-2sint=sinx+cosa=t-如图:数a的取值范围为[2,故答案选D【点睛】本题考查了换元法,参数分离,函数图像,参数分离和换元法可以简化运算,是解题的关键.3、D【解析】

根据向量线性运算可得,由坐标可得结果.【详解】故选:【点睛】本题考查平面向量的线性运算,属于基础题.4、B【解析】绘制圆柱的轴截面如图所示,由题意可得:,结合勾股定理,底面半径,由圆柱的体积公式,可得圆柱的体积是,故选B.【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.5、B【解析】

令,再计算二次函数定区间上的最大值。【详解】令则【点睛】本题考查利用换元法将计算三角函数的最值转化为计算二次函数定区间上的最值。属于基础题。6、C【解析】试题分析:根据已知可得:,所以,所以夹角为,故选择C考点:向量的运算7、A【解析】

剩余数据为:84.84,86,84,87,计算中位数和平均数.【详解】剩余数据为:84.84,86,84,87则中位数为:84平均数为:故答案为A【点睛】本题考查了中位数和平均数的计算,属于基础题型.8、D【解析】试题分析:由题意可知x=-4,y=3,r=5,所以.故选D.考点:三角函数的概念.9、C【解析】

依次分析每个选项中两条直线与平面的位置关系,确定两条直线的位置关系即可.【详解】平行于同一平面的两条直线不一定相互平行,故选项A错误,平行于平面的直线不一定与该平面内的直线平行,故选项B错误,垂直于平面的直线,垂直于与该平面平行的所有线,故选项C正确,垂直于同一平面的两条直线相互平行,故选项D错误.故选:C.【点睛】本题考查了直线与平面位置关系的辨析,属于基础题.10、D【解析】

依照题意采用解析法,建系求出目标向量坐标,用数量积的坐标表示即可求出结果.【详解】如图,以A为原点,AC,AB所在直线分别为轴建系,依题设A(0,0),B(0,2),C(3,0),M(1,0),,由得,,解得,,所以,,,故选D.【点睛】本题主要考查解析法在向量中的应用,意在考查学生数形结合的能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据条件以及诱导公式计算出的值,再由的范围计算出的值,最后根据商式关系:求得的值.【详解】因为,所以,又因为且为第三象限角,所以,所以.故答案为:.【点睛】本题考查三角函数中的给值求值问题,中间涉及到诱导公式以及同角三角函数的基本关系,难度一般.三角函数中的求值问题,一定要注意角的范围,避免出现多解.12、1【解析】

由题得圆心在直线上,解方程即得解.【详解】由题得圆心(1,a)在直线上,所以.故答案为1【点睛】本题主要考查直线和圆的位置关系,意在考查学生对该知识的理解掌握水平,属于基础题.13、【解析】

根据成等差数列得到,计算得到答案.【详解】成等差数列,则故答案为:【点睛】本题考查了等差数列,等比数列的综合应用,意在考查学生对于数列公式的灵活运用.14、①②④【解析】

由余弦函数的周期公式可判断①;由任意角的三角函数定义可判断②;由余弦函数和一次函数的图象可判断③;由诱导公式和余弦函数的单调性可判断④.【详解】函数y=cos(﹣2x)即y=cos2x的最小正周期是π,故①正确;在直角坐标系xOy中,点P(a,b),将向量绕点O逆时针旋转90°得到向量,设a=rcosα,b=rsinα,可得rcos(90°+α)=﹣rsinα=﹣b,rsin(90°+α)=rcosα=a,则点Q的坐标是(﹣b,a),故②正确;在同一直角坐标系中,函数y=cosx的图象和函数y=x的图象有一个公共点,故③错误;函数y=sin(x)即y=﹣cosx在[0,π]上是增函数,故④正确.故答案为①②④.【点睛】本题考查余弦函数的图象和性质,主要是周期性和单调性,考查数形结合思想和化简运算能力,属于基础题.15、【解析】

计算出,再由可得出的值.【详解】当时,则,当时,则,当时,.,,因此,.故答案为:.【点睛】本题考查数列求和,解题的关键就是找出数列的规律,考查分析问题和解决问题的能力,属于中等题.16、【解析】

利用等差数列前项和,可得;利用等差数列的性质可得,然后求解三角函数值即可.【详解】等差数列的前项和为,因为,所以;又,所以.故答案为:.【点睛】本题考查等差数列的前项和公式和等差数列的性质的应用,熟练掌握和若,则是解题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】

(1)识别频率直方图,注意其纵轴的意义;(2)在频率直方图中平均数是每组数据的组中值乘以频率,中位数是排在最中间的数;(3)求出古典概型中的基本事情总数和具体事件数,利用比值求解.【详解】(1)由频率分布直方图知,年龄在的频率为所以,名读书者年龄分布在的人数为人.(2)名读书者年龄的平均数为:设中位数为,解之得,即名读书者年龄的中位数为岁.(3)年龄在的读书者有人,记为,;年龄在的读数者有人,记为,,,从上述人中选出人,共有如下基本事件:,共有基本事件数为个,记选取的两名读者中恰好有一人年龄在中为事件,则事件包含的基本事件数为个:故.【点睛】本题考查识别频率直方图和样本的数字特征,属于基础题.18、(1)(2)或【解析】

(1)根据倾斜角等于直线的倾斜角的倍,求出直线的倾斜角,再利用点斜式写出直线。(2)与两坐标轴围成一个等腰直角三角形等价于直线的斜率为.【详解】(1)已知,直线方程为化简得(2)由题意可知,所求直线的斜率为.又过点,由点斜式得,所求直线的方程为或【点睛】本题考查直线方程,属于基础题。19、直线方程为或【解析】

当直线的斜率不存在时,直线方程为,满足题意,当直线的斜率存在时,设出直线的方程,由圆心到直线的距离等于半径,可解出的值,从而求出方程。【详解】当直线的斜率不存在时,直线方程为,经检验,满足题意.当直线的斜率存在时,设直线方程为,即,圆心到直线的距离等于半径,即,可解得.即直线为.综上,所求直线方程为或.【点睛】本题考查了圆的切线的求法,考查了直线的方程,考查了点到直线的距离公式,属于基础题。20、或【解析】

首先根据三角形面积公式求出角B的正弦值,然后利用平方关系,求出余弦值,再依据余弦定理即可求出.【详解】由得,,所以或,由余弦定理有,,故或,即或.【点睛】本题主要考三角形面积公式、同角三角函数基本关系的应用,以及利用余弦定理解三角形.21、(1)见解析;(2)见解析【解析】

(1)连AF交BE于Q,连QO,推导出Q是△PAB的重心,从而FG∥QO,由此能证明FG∥平面EBO.(2)推导出BO⊥AC,从而BO⊥面PAC,进而BO⊥PA,再求出OE⊥PA,由此能证明PA⊥平面EBO,利用线面垂直的性质可证PA⊥BE.【详解】(1)连接AF交BE于Q,连接QO,因为E,F分别为边PA,PB的中点,所以Q为△PAB的重心,可得:2,又因为O为线段AC的中点,G是线段CO的中点,所以2,于是,所以FG∥QO,因为FG⊄平面EBO,QO⊂平面EBO,所以FG∥平面EBO.(2)因为O为边AC的中点,AB=BC,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论