2021年高三数学理月考试卷含解析_第1页
2021年高三数学理月考试卷含解析_第2页
2021年高三数学理月考试卷含解析_第3页
2021年高三数学理月考试卷含解析_第4页
2021年高三数学理月考试卷含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021年高三数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数有个零点,则实数的取值范围是(

A.

B.

C.

D.参考答案:D2.执行如图所示的程序框图,若输入p=2017,则输出i的值为()A.335 B.336 C.337 D.338参考答案:C【考点】程序框图.【分析】根据题意,模拟程序框图的运行过程,即可得出输出i的值.【解答】解:模拟程序的运行,可得程序框图的功能是统计1到2017这些数中能同时被2和3整除的数的个数i,由于:2017=336×6+1,故程序框图输出的i的值为337.故选:C.【点评】本题考查了程序框图的应用问题,解题时模拟程序框图的运行过程,正确得出程序框图的功能是解题的关键,属于基础题.3.已知函数.若,则的取值范围是(

)A.

B.

C.

D.参考答案:D4.平面直角坐标系xOy中,动点P到圆上的点的最小距离与其到直线的距离相等,则P点的轨迹方程是(

)A. B. C. D.参考答案:A试题分析:设圆心为,动点到直线的距离为,根据题意得:,可得,即:动点到圆上的点的最小距离与其到直线的距离相等,根据抛物线的定义,动点的轨迹为以为焦点,以为准线的抛物线,设方程为,则,,所以抛物线方程为:,选A.考点:抛物线定义.【思路点晴】本题主要考查的是抛物线的定义和抛物线的方程,属于中档题.本题动点到圆上的点的最小距离与其到直线的距离相等,可转化为动点到圆上的点的最小距离与其到直线的距离相等,从而利用抛物线的定义进行求解.解决圆锥曲线问题时注意圆锥曲线定义的应用.

5.设是虚数单位,若复数满足,则复数(

)A. B. C. D.参考答案:D6.为得到函数y=sin(x+)的图象,可将函数y=sinx的图象向左平移m个单位长度,或向右平移n个单位长度(m,n均为正数),则|m﹣n|的最小值是(

)A. B. C. D.参考答案:B【考点】函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】依题意得m=2k1π+,n=2k2π+(k1、k2∈N),于是有|m﹣n|=|2(k1﹣k2)π﹣|,从而可求得|m﹣n|的最小值.【解答】解:由条件可得m=2k1π+,n=2k2π+(k1、k2∈N),则|m﹣n|=|2(k1﹣k2)π﹣|,易知(k1﹣k2)=1时,|m﹣n|min=.故选:B.【点评】本题考查函数y=Asin(ωx+φ)的图象变换,得到|m﹣n|=|2(k1﹣k2)π﹣|是关键,考查转化思想.7.执行如图所示的程序框图,输出的结果是(A)11

(B)12

(C)13

(D)14参考答案:C8.已知向量=(1,0),=(0,1),则下列向量中与向量2+垂直的是()A.+ B.﹣ C.2﹣ D.﹣2参考答案:D【考点】平面向量的坐标运算.【分析】根据坐标运算求出2+和﹣2的坐标,计算即可.【解答】解:=(1,0),=(0,1),则2+=(2,1),而﹣2=(1,﹣2),故(2+)(﹣2)=0,故选:D.9.在的展开式中,含的项的系数是(

)

(A)15

(B)85

(C)120

(D)274参考答案:【解析】A解析:本小题主要考查二项式定理展开式具体项系数问题。本题可通过选括号(即5个括号中4个提供,其余1个提供常数)的思路来完成。故含的项的系数为10.已知命题所有有理数都是实数,命题正数的对数都是负数,则下列命题中为真命题的是(

)A.

B. C. D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.在下列结论中:①函数为奇函数;②函数的图象关于点对称;③函数的图象的一条对称轴为;④若,则.其中正确结论的序号为

(把所有正确结论的序号都填上).参考答案:①③12.数列1,5,9,13,…的一个通项公式可能是=__________________.参考答案:;13.如图,在透明塑料制成的长方体ABCD-A1B1C1D1容器内装进一些水,将容器底面一边BC固定于底面上,再将容器倾斜,随着倾斜度的不同,有下列三个说法:①水的形状始终是棱柱形状;②水面形成的四边形EFGH的面积不改变;③当时,AE+BF是定值。其中正确说法是_______。(写出正确说法的序号)参考答案:(1)、(3)略14.已知等比数列的前项和为,若,则的值是

.参考答案:15.已知x1,x2是函数f(x)=2sin2x+cos2x﹣m在[0,]内的两个零点,则sin(x1+x2)=.参考答案:【考点】函数零点的判定定理.【分析】由题意可得m=2sin2x1+cos2x1=2sin2x2+cos2x2,运用和差化积公式和同角的基本关系式,计算即可得到所求值.【解答】解:x1,x2是函数f(x)=2sin2x+cos2x﹣m在[0,]内的两个零点,可得m=2sin2x1+cos2x1=2sin2x2+cos2x2,即为2(sin2x1﹣sin2x2)=﹣cos2x1+cos2x2,即有4cos(x1+x2)sin(x1﹣x2)=﹣2sin(x2+x1)sin(x2﹣x1),由x1≠x2,可得sin(x1﹣x2)≠0,可得sin(x2+x1)=2cos(x1+x2),由sin2(x2+x1)+cos2(x1+x2)=1,可得sin(x2+x1)=±,由x1+x2∈[0,π],即有sin(x2+x1)=.故答案为:.16.定义新运算为a?b=,则2?(3?4)的值是__

__.参考答案:317.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图(如图所示)。为了分析居民的收入与年龄、学历、职业等方面的关系,在从这10000人中再用分层抽样方法抽出100人作进一步调查,则在(2500,3500元/月)收入段应抽出

人。

参考答案:40三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.从某校高三上学期期末数学考试成绩中,随机抽取了60名学生的成绩得到如图所示的频率分布直方图:(1)根据频率分布直方图,估计该校高三学生本次数学考试的平均分;(2)若用分层抽样的方法从分数在[30,50)和[130,150]的学生中共抽取6人,该6人中成绩在[130,150]的有几人?(3)在(2)中抽取的6人中,随机抽取2人,求分数在[30,50)和[130,150]各1人的概率.参考答案:【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(1)由频率分布直方图,能求出该校高三学生本次数学考试的平均分.(2)样本中分数在[30,50)和[130,150]的人数分别为6人和3人,由此能求出抽取的6人中分数在[130,150]的人数.(3)抽取的6人中分数在[30,50)的有4人,记为A1,A2,A3,A4,分数在[130,150]的人有2人,记B1,B2,由此利用列举法能求出分数在[30,50)和[130,150]各1人的概率.【解答】解:(1)由频率分布直方图,得该校高三学生本次数学考试的平均分为:0.0050×20×40+0.0075×20×60+0.0075×20×80+0.0150×20×100+0.0125×20×120+0.0025×20×140=92.…(2)样本中分数在[30,50)和[130,150]的人数分别为6人和3人,所以抽取的6人中分数在[130,150]的人有(人)…(3)由(2)知:抽取的6人中分数在[30,50)的有4人,记为A1,A2,A3,A4分数在[130,150]的人有2人,记B1,B2,从中随机抽取2人总的情形有:(A1,A2)、(A1,A3)、(A1,A4)、(A1,B1)、(A1,B2)、(A2,A3)、(A2,A4)、(A2,B1)、(A2,B2)、(A3,A4)、(A3,B1)、(A3,B2)、(A4,B1)、(A4,B2)、(B1,B2)15种;而分数在[30,50)和[130,150]各1人的情形有(A1,B1)、(A1,B2)、(A2,B1)、(A2,B2)、(A3,B1)、(A3,B2)、(A4,B1)、(A4,B2)8种故分数在[30,50)和[130,150]各1人的概率…19.将圆x2+y2﹣2x=0向左平移一个单位长度,再把所得曲线上每一点的纵坐标保持不变,横坐标变为原来的倍得到曲线C.(1)写出曲线C的参数方程;(2)以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知直线l的极坐标方程为ρsin(θ+)=,若A,B分别为曲线C及直线l上的动点,求|AB|的最小值.参考答案:【考点】QH:参数方程化成普通方程;Q4:简单曲线的极坐标方程.【分析】(1)将圆方程转化成标准方程,根据坐标变换,即可求得曲线C的方程,即可求得参数方程;(2)由直线l的极坐标方程求得直角坐标方程,利用点到直线的距离公式,辅助角公式及正弦函数的性质,即可求得|AB|的最小值.【解答】解:(1)圆x2+y2﹣2x=0的标准方程为(x﹣1)2+y2=1,向左平移一个单位后,所得曲线的方程为x2+y2=1,把曲线x2+y2=1上每一点的横坐标变为原来的倍(纵坐标不变),得到曲线C的方程为+y2=1,故曲线C的参数方程为(α为参数).﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)由ρsin(θ+)=,得ρcosθ+ρsinθ=3,由x=ρcosθ,y=ρsinθ,可得直线l的直角坐标方程为x+y﹣3=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以曲线C上的点到直线l的距离d=═≥=,所以丨AB丨≥,即当α=时,丨AB丨取得最小值.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣20.在△ABC中,角A,B,C所对的边分别是a,b,c,且△ABC的面积为.(Ⅰ)求a的值;(Ⅱ)求的值.参考答案:(Ⅰ)由,,得…2分,解得:………………3分又………………5分即………………6分(Ⅱ)由(Ⅰ)得:,……………8分……………10分故……………11分……………13分21.已知函数,曲线在点处的切线方程为.(1)求a,b的值;(2)若,求证:对于任意,.参考答案:(1),(2)见解析【分析】(1)根据导数的运算法则,求出函数的导数,利用切线方程求出切线的斜率及切点,利用函数在切点处的导数值为曲线切线的斜率及切点也在曲线上,列出方程组,求出,值;(2)首先将不等式转化为函数,即将不等式右边式子左移,得,构造函数并判断其符号,这里应注意的取值范围,从而证明不等式.【详解】解:(1)由于直线的斜率为,且过点,故即解得,.(2)由(1)知,所以.考虑函数,,则.而,故当时,,所以,即.【点睛】本题考查了利用导数求切线的斜率,利用函数的导数研究函数的单调性、和最值问题,以及不等式证明问题,考查了分析及解决问题的能力,其中,不等式问题中结合构造函数实现正确转换为最大值和最小值问题是关键.

22.[选修4-5:不等式选讲]已知函数f(x)=|x﹣2a|+|x+| (1)当a=1时,求不等式f(x)>4的解集; (2)若不等式f(x)≥m2﹣m+2对任意实数x及a恒成立,求实数m的取值范围.参考答案:【考点】绝对值三角不等式;绝对值不等式的解法. 【分析】(1)当a=1时,分类讨论,求不等式f(x)>4的解集; (2)f(x)=|x﹣2a|+|x+|≥|2a+|=|2a|+||,利用不等式f(x)≥m2﹣m+2对任意实数x及a恒成立,求实数m的取值范围. 【解答】解:(1)当a=1时,不等式f(x)>4为|x﹣2|+|x+1|>4. x<﹣1时,不等式可化为﹣(x﹣2)﹣(x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论