




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1/1六年级数学下册第二单元知识点归纳3篇六年级数学下册第二单元知识点归纳1知识点一:圆柱、圆锥的认识
相关概念:
①圆柱由一个上底面、一个下底面和一个侧面组成。上下底面是两个完全相同的圆形;侧面是一个曲面。②圆柱的高:上下底面之间的距离。圆柱有无数条高,每条高相等。
③圆锥由一个底面和一个侧面组成。底面是一个圆形;侧面是一个曲面。
④圆柱的高:圆锥的定点到底面圆心的距离。圆锥只有一条高。
知识点二:圆柱侧面积的计算方法
理解掌握:圆柱的侧面展开图:有可能是长方形,也有可能是正方形。
①假如是长方形,那么长方形的长a,就是圆柱底面的周长C,宽b就是圆柱的*。
长方形的面积S=a×b=C×h=2πr×h=2πrh,就是圆柱的侧面积。
②假如是正方形,那么正方形的边长a既等于圆柱底面的周长C,也等于圆柱的*,也就是说底面周长和
高相等。
正方形的面积S=a×a=C×h=2πr×h=2πrh,就是圆柱的侧面积。
所以圆柱的侧面积公式=Ch或者=2πrh或者=πdh
知识点三:圆柱表面积的计算方法
理解掌握:圆柱的表面积由一个侧面加上两个底面组成,计算方法是S表=S侧+2S底,因为S侧=Ch,S底=πr,
2所以S表=Ch+2πr
2=2πrh+2πr
2用乘法分配率得圆柱的表面积公式=2π(rh+r)
例1:一个圆柱形的罐头盒,高是12.56厘米,它的侧面展开图是一个正方形,做一个这样的罐头盒需要多少铁皮?解析:本题中罐头盒的侧面展开图是正方形,说明圆柱的底面周长和高相等,都等于12.56厘米,可以根据圆的周长公式C=2πr,把r先求出,最后再用圆柱的表面积公式。
解:12.56÷3.14÷2=2厘米
22×π×(2×12.56+2)=182.8736*方厘米答:做一个这样的罐头盒需要182.8736*方厘米铁皮。2
知识点四:圆柱体积的计算方法
理解掌握:利用我们以前学过的长方体的体积公式V长方体=S底×h,可以得到圆柱的体积公式V圆柱=S底×h,长方体的底
面积是长方形或正方形,而圆柱的底面积是圆。
2相关公式:①已知半径和高,V圆柱=πrh
2②已知直径和高,V圆柱=π(d÷2)h
2③已知周长和高,V圆柱=π(C÷2π)h
难点解析:把圆柱的底面*均分成n份,切开后*成一个近似的长方体。
得到的结论:圆柱的底面周长等于长方体的两条长的和;
圆柱的半径等于长方体的宽;
圆柱的高等于长方体的高;
圆柱的体积等于长方体的体积;
圆柱的侧面=长方体的前、后两个面积的和(长×高);圆柱的上、下底面和等于长方体的
上、下底面和(长×宽),所以圆柱的表面积比长方体的表面积少左右两个侧面(宽×高)。
知识点五:圆锥体积的计算方法
理解掌握:根据书本上的实验可以得到结论:等底等高的圆柱和圆锥,圆柱的体积是圆锥的3倍,或者说圆锥的体积
是圆柱的三分之一。用字母表示为V圆柱=3V圆锥或者V圆锥=1/3V圆柱。
相关公式:只需要在圆柱的相关公式前面乘以三分之一。
2①已知半径和高,V圆锥=1/3πrh
2②已知直径和高,V圆锥=1/3π(d÷2)h
2③已知周长和高,V圆锥=1/3π(C÷2π)h
重点解析:在一个圆柱里面挖一个最大的圆锥,圆锥的体积和剩余部分的体积比是1:2。
例1:工地上的沙堆成近似的圆锥形,底面周长是12.56米,高是1.5米,每立方米沙子约重1.7吨,这堆沙子共重多少吨?
2解析:根据题目中的条件,可以用公式V圆锥=1/3π(C÷2π)h
21/3×3.14×(12.56÷2÷3.14)×1.5=6.28立方米
6.28×1.7=10.676吨答:这堆沙子共重10.676吨。
知识点七:圆柱和圆锥的横截面
理解掌握:圆柱横截面的分割方法:
①按底面的直径分割,这样分割的横截面是长方形或者是正方形,如果横截面是正方形说明圆柱的底面直
径和高相等。
②按*行于底面分割,这样分割的`横截面是圆。
圆锥横截面的分割方法:
①按圆锥的高分割,这样分割的横截面是等腰三角形。
②按*行于底面分割,这样分割的横截面是圆。
六年级数学下册第二单元知识点归纳3篇扩展阅读
六年级数学下册第二单元知识点归纳3篇(扩展1)
——六年级数学下册知识点归纳3篇
六年级数学下册知识点归纳1一、负数:
1、在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。
2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。
3、能借助数轴初步学会比较正数、0和负数之间的大小。
二、圆柱和圆锥
1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。
2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3、通过观察、设计和制作圆柱、圆锥模型等活动,了解*面图形与立体图形之间的联系,发展学生的空间观念。
三、比例
1、理解比例的意义和基本性质,会解比例。
2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4、了解比例尺,会求*面图的比例尺以及根据比例尺求图上距离或实际距离。
5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育
六年级数学下册知识点归纳2(一)、折扣和成数
1、折扣:
用于商品,现价是原价的百分之几,叫做折扣。通称“打折”。
几折就是十分之几,也就是百分之几十。例如:八折=8/10=80﹪,
六折五=6.5/10=65/100=65﹪
解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
商品现在打八折:现在的售价是原价的80﹪
商品现在打六折五:现在的售价是原价的65﹪
2、成数:
几成就是十分之几,也就是百分之几十。例如:一成=1/10=10﹪
八成五=8.5/10=85/100=80﹪
解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪
今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪
(二)、税率和利率
1、税率
(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
(2)纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。
(3)应纳税额:缴纳的税款叫做应纳税额。
(4)税率:应纳税额与各种收入的比率叫做税率。
(5)应纳税额的计算方法:
应纳税额=总收入×税率
收入额=应纳税额÷税率
2、利率
(1)存款分为活期、整存整取和零存整取等方法。
(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。
(3)本金:存入银行的钱叫做本金。
(4)利息:取款时银行多支付的钱叫做利息。
(5)利率:利息与本金的比值叫做利率。
(6)利息的.计算公式:
利息=本金×利率×时间
利率=利息÷时间÷本金×100%
(7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:
税后利息=利息利息的应纳税额=利息利息×利息税率=利息×(1利息税率)
税后利息=本金×利率×时间×(1利息税率)
购物策略:
估计费用:根据实际的问题,选择合理的估算策略,进行估算。
购物策略:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案
学后反思:做事情运用策略的好处
六年级数学下册知识点归纳31、鸽巣原理是一个重要而又基本的组合原理,在解决数学问题时有非常重要的作用
①什么是鸽巣原理,先从一个简单的例子入手,把3个苹果放在2个盒子里,共有四种不同的放法,如下表
放法盒子1盒子2
130
221
312
403
无论哪一种放法,都可以说“必有一个盒子放了两个或两个以上的苹果”。这个结论是在“任意放法”的情况下,得出的一个“必然结果”。
类似的,如果有5只鸽子飞进四个鸽笼里,那么一定有一个鸽笼飞进了2只或2只以上的鸽子
如果有6封信,任意投入5个信箱里,那么一定有一个信箱至少有2封信
我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣,可以得到鸽巣原理最简单的表达形式
②利用公式进行解题:
物体个数÷鸽巣个数=商……余数
至少个数=商+1
2、摸2个同色球计算方法。
①要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1。
物体数=颜色数×(至少数1)+1
②极端思想:用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。
③公式:
两种颜色:2+1=3(个)
三种颜色:3+1=4(个)
四种颜色:4+1=5(个)
六年级数学下册第二单元知识点归纳3篇(扩展2)
——六年级下册数学第二单元知识点3篇
六年级下册数学第二单元知识点1一、圆柱
1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。
圆柱也可以由长方形卷曲而得到。
两种方式:
1、以长方形的长为底面周长,宽为高;
2、以长方形的宽为底面周长,长为高。
其中,第一种方式得到的圆柱体体积较大。
2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的
3、圆柱的特征:
(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高
4、圆柱的切割:
①横切:切面是圆,表面积增加2倍底面积,即S增=2πr?0?5
②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh
5、圆柱的侧面展开图:
①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形
②不沿着高展开,展开图形是*行四边形或不规则图形
③无论怎么展开都得不到梯形
圆柱变形记,圆柱怎么变形成长方体?与长方体又有什么联系?怎么借助长方体的体积计算圆柱的体积?
6、圆柱的相关计算公式:
底面积:S底=πr?0?5
底面周长:C底=πd=2πr
侧面积:S侧=2πrh
表面积:S表=2S底+S侧=2πr?0?5+2πrh
体积:V柱=πr?0?5h
考试常见题型:
①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长
②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积
③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积
④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积
⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积
以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算
无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积
烟囱通风管的表面积=侧面积
只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装
侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池
侧面积+两个底面积:油桶、米桶、罐桶类
二、圆锥
1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。圆锥也可以由扇形卷曲而得到。
2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高
3、圆锥的特征:
(1)底面的特征:圆锥的底面一个圆。
(2)侧面的特征:圆锥的侧面是一个曲面。
(3)高的特征:圆锥有一条高。
4、圆锥的切割:
①横切:切面是圆
②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即S增=2rh
5、圆锥的相关计算公式:
底面积:S底=πr?0?5
底面周长:C底=πd=2πr
体积:V锥=1/3πr?0?5h
考试常见题型:
①已知圆锥的底面积和高,求体积,底面周长
②已知圆锥的底面周长和高,求圆锥的体积,底面积
③已知圆锥的底面周长和体积,求圆锥的高,底面积
以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算
圆柱和圆锥的关系
1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。
2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。
3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。
4、圆柱与圆锥等底等高,体积相差2/3Sh
六年级下册数学第二单元知识点2长度单位换算:
1千米=1000米。
1米=10分米。
1分米=10厘米。
1米=100厘米。
1厘米=10毫米。
面积单位换算:
1*方千米=100公顷。
1公顷=10000*方米。
1*方米=100*方分米。
1*方分米=100*方厘米。
1*方厘米=100*方毫米。
体(容)积单位换算:
1立方米=1000立方分米。
1立方分米=1000立方厘米。
1立方分米=1升。
1立方厘米=1毫升。
1立方米=1000升。
重量单位换算:
1吨=1000千克。
1千克=1000克。
1千克=1公斤。
人民币单位换算:
1元=10角。
1角=10分。
1元=100分。
时间单位换算:
1世纪=100年。
1年=12月。
大月(31天)有:135781012月。
小月(30天)的有:46911月。
*年2月28天,闰年2月29天。
*年全年365天,闰年全年366天。
1日=24小时1时=60分。
1分=60秒1时=3600秒。
六年级数学下册第二单元知识点归纳3篇(扩展3)
——六年级数学下册第三单元知识点归纳3篇
六年级数学下册第三单元知识点归纳11、比的意义
(1)两个数相除又叫做两个数的比
(2):是比号,读作比。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。
(5)比的后项不能是零。
(6)2022年的小学六年级数学下册第三单元知识点归纳:根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
2、比的基本性质:
比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
3、求比值和化简比:
求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。
4、按比例分配:
在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的'方法通常叫做按比例分配。
方法:
首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
5、比例的意义:
比例的意义
表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
6、比例的基本性质:
在比例里,两个外项的积等于两个两个内项的积。这叫做比例的基本性质。
7、比和比例的区别
(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。
(2)比有基本性质,它是化简比的依据;比例出有基本性质,它是解比例的依据。
7、解比例:根据比例的基本性质,把比例转化成以前学过的方程,求比例中的未知项,叫做解比例。
8、成正比例的量:
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示y/x=k(一定)
9、成反比例的量:
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。用字母表示xy=k(一定)
10、判断两种量成正比例还是成反比例的方法:
关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。
11、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
12、比例尺的分数
(1)数值比例尺和线段比例尺
(2)缩小比例尺和放大比例尺
13、图上距离:实际距离=比例尺
实际距离比例尺=图上距离
图上距离比例尺=实际距离
14、应用比例尺画图
(1)写出图的名称、
(2)确定比例尺;
(3)根据比例尺求出图上距离;
(4)画图(画出单位长度)
(5)标出实际距离,写清地点名称
(6)标出比例尺
15、图形的放大与缩小:形状相同,大小不同。(相似图形)
16、用比例解决问题:
根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解。
六年级数学下册第二单元知识点归纳3篇(扩展4)
——五年级数学第二单元知识点3篇
五年级数学第二单元知识点11.小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.60.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。
2.小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
3.(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按除数是整数的小数除法的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用0补足。
4.(P23)在实际应用中,小数除法所得的商也可以根据需要用四舍五入法保留一定的小数位数,求出商的近似数。
5.(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
②除数不变,被除数扩大,商随着扩大。③被除数不变,除数缩小,商扩大。
6.(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232的循环节是32。
7.小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。
五年级数学第二单元知识点2分数乘法
(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:12(5)×6,表示:6个12(5)相加是多少,还表示12(5)的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×12(5),表示:6的12(5)是多少。
7(2)×12(5),表示:7(2)的12(5)是多少。
(二)、分数乘法的计算法则:
1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:
1、一个数(0除外)乘以一个真分数,所得的积小于它本身。一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量
(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。
(4)根据已知条件和问题列式解答。
2.乘法应用题有关注意概念。
(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?
(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。当句子中的单位“1”不明显时,把原来的量看做单位“1”。
(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。
(4)在应用题中如:小湖村去年水稻的.亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”
(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。
(6)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。
(7)乘法应用题中,单位“1”是已知的。
(8)单位“1”不同的两个分率不能相加减,加减属相差比,始终遵循“凡是比较,单位一致”的规则。
(9).找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前)。单位“1”×分率=比较量;比较量÷分率=单位“1”
(10).单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。
(11).单位“1”的特点:①单位“1”为分母;②单位“1”为不变量。
(12)分率与量要对应。
①多的对应量对多的分率;
②少的对应量对少的分率;
③增加的对应量对增加的分率;
④减少的对应量对减少的分率;
⑤提高的对应量对提高的分率;
⑥降低的对应量对降低的分率;
⑦工作总量的对应量对工作总量的分率;
⑧工作效率的对应量对工作效率的分率;
⑨部分的对应量对部分的分率;
⑩总量的对应量对总量的分率;
例如:1、求一个数的几分之几是多少?(求一个数的几分之几用乘法计算)
方法:单位“1”的数量×对应分率=对应数量。
2、分数的连乘。找到每一个分率的单位“1”。
(五)、倒数
1、倒数:乘积是1的两个数互为倒数。
2、求倒数的方法:把这个数写成分数形式,然后将分子和分母交换位置。
3、0没有倒数,1的倒数是它本身。
4、真分数的倒数都大于它本身,假分数的倒数等于或小于它本身。
注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。
六年级数学下册第二单元知识点归纳3篇(扩展5)
——六年级数学圆知识点归纳3篇
六年级数学圆知识点归纳11、圆心:圆任意两条对称轴的交点为圆心注:圆心一般符号O表示?
2、直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示
3、半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示
圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=d/2
圆的半径或直径决定圆的大小,圆心决定圆的位置
4、圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示
5、圆周率:圆的周长与直径的比值叫做圆周率
圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14
直径所对的圆周角是直角。90°的圆周角所对的弦是直径
6、圆的面积公式:圆所占*面的大小叫做圆的面积。πr^2;,用字母S表示
一条弧所对的圆周角是圆心角的二分之一
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等
7、周长计算公式?
(1)已知直径:C=πd
(2)已知半径:C=2πr
(3)已知周长:D=c/π
(4)圆周长的一半:1/2周长(曲线)
(5)半圆的周长:1/2周长+直径(π÷2+1)
8、面积计算公式:
(1)已知半径:S=πr2
(2)已知直径:S=π(d/2)2
(3)已知周长:S=π[c÷(2π)]2
六年级数学下册第二单元知识点归纳3篇(扩展6)
——六年级数学上册知识点复习3篇
六年级数学上册知识点复习1(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
(二)分数乘法计算法则:
1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)
(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b>1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b六年级数学下册第二单元知识点归纳3篇(扩展7)
——小学六年级数学知识点
小学六年级数学知识点11、理解比例的意义和基本性质,会解比例。
2、理解正比例和反比例的意义,能找出生活中成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国仿皮首饰盒数据监测研究报告
- 公司各部门年度工作总结
- 应届生品质工程师述职报告
- 2025年中国铜钱市场调查研究报告
- 二零二五年度人工智能企业劳动合同双方权利义务规范协议
- 二零二五年度药店与医药咨询公司合作协议
- 电池组装设备培训课件
- 二零二五年度企业信用管理及守合同风险评估合同
- 2025年度电力系统运行供用电合同全新编制
- 品质实验室工作总结与计划
- 国内外测井技术现状与展望文档
- 大模型专题:2024大模型技术及其在金融行业的应用探索报告
- 天津地区高考语文五年高考真题汇编-语言文字应用
- 特殊作业安全管理监护人专项培训课件
- 道路运输企业两类人员安全考核试题及答案
- 卫生技术人员准入制度
- 简单酒店装修合同书范本(30篇)
- 2024-2030年中国核桃油行业消费趋势及竞争格局分析研究报告
- 安全、环境、职业健康安全目标、指标及管理方案
- 课件:《中华民族共同体概论》第一讲 中华民族共同体基础理论
- JJF(皖) 179-2024 气体涡街流量计在线校准规范
评论
0/150
提交评论