基于深层神经网络的激光雷达位置校准与生物量估测_第1页
基于深层神经网络的激光雷达位置校准与生物量估测_第2页
基于深层神经网络的激光雷达位置校准与生物量估测_第3页
基于深层神经网络的激光雷达位置校准与生物量估测_第4页
基于深层神经网络的激光雷达位置校准与生物量估测_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

基于深层神经网络的激光雷达位置校准与生物量估测摘要:本文结合深层神经网络技术,研究了激光雷达位置校准与生物量估测问题。首先,针对激光雷达安装位置不确定性和激光雷达点云数据噪声干扰问题,提出了基于最小二乘法与梯度下降算法相结合的位置校准方法。该方法可以高效地解决位置校准问题,提高激光雷达测量数据的精度与可信度。其次,针对生物量估测中林下植被的自动分割、分类问题,提出了基于深度卷积神经网络的方法,可以准确地识别林下植被的类型,为生物量估测提供了可靠的数据。最后,提出了基于深度逆卷积神经网络的生物量估测模型,该模型可以对林下植被进行分类、识别和预测,进一步提高生物量估测的准确性和可靠性。实验结果表明,本文提出的方法可以有效地解决激光雷达位置校准与生物量估测问题,具有良好的应用前景。

关键词:激光雷达;深层神经网络;位置校准;生物量估测;自动分割;分类;逆卷积

Abstract:Thispapercombinesdeepneuralnetworktechnologytostudytheproblemsoflaserradarpositioncalibrationandbiomassestimation.Firstly,aimingattheuncertaintyoflaserradarinstallationpositionandthenoiseinterferenceoflaserradarpointclouddata,apositioncalibrationmethodcombiningleastsquaresmethodandgradientdescentalgorithmisproposed.Thismethodcanefficientlysolvetheproblemofpositioncalibration,improvetheaccuracyandcredibilityoflaserradarmeasurementdata.Secondly,aimingattheautomaticsegmentationandclassificationofunderstoryvegetationinbiomassestimation,amethodbasedondeepconvolutionalneuralnetworkisproposed,whichcanaccuratelyidentifythetypeofunderstoryvegetationandprovidereliabledataforbiomassestimation.Finally,abiomassestimationmodelbasedondeepinverseconvolutionalneuralnetworkisproposed,whichcanclassify,identifyandpredicttheunderstoryvegetation,furtherimprovingtheaccuracyandreliabilityofbiomassestimation.Theexperimentalresultsshowthattheproposedmethodcaneffectivelysolvetheproblemsoflaserradarpositioncalibrationandbiomassestimation,andhasgoodapplicationprospects.

Keywords:laserradar;deepneuralnetwork;positioncalibration;biomassestimation;automaticsegmentation;classification;inverseconvolution。Laserradarisasophisticatedinstrumentusedtomeasurethedistanceofanobject.Itcanaccuratelymeasuretheheightandreflectivityoftreesandtheunderlyingvegetation,makingitanidealtoolforforestbiomassestimation.However,theaccuracyoflaserradarisaffectedbyvariousfactors,suchasthepositioncalibrationoftheinstrumentandthepresenceofunderstoryvegetation.

Toaddressthesechallenges,adeepneuralnetworkapproachisproposedtoaccuratelyestimateforestbiomass.Theproposedmethodinvolvesautomaticsegmentationofthelaserradardatatoidentifythecanopyandunderstoryvegetation.Thenetworkisthentrainedtoclassifythevegetationtypesandpredictthebiomassofthetrees.

Oneofthemajorchallengesinusinglaserradaristheneedforaccuratepositioncalibration.Theproposedmethodusesaninverseconvolutiontechniquetoperformpositioncalibration,whichgreatlyimprovestheaccuracyofthemeasurements.

Theexperimentalresultsshowedthattheproposedapproachachievedhighaccuracyinestimatingforestbiomass.Comparedtotraditionalmethods,theproposedapproachwasabletoaccuratelyestimatebiomasseveninthepresenceofunderstoryvegetation.

Inconclusion,theproposedapproach,whichcombinesdeepneuralnetworkandlaserradartechnology,showspromisingresultsinaccuratelyestimatingforestbiomass,andhaspotentialapplicationsinavarietyofforestmanagementscenarios。Furthermore,theproposedapproachhasthepotentialtoimprovetheefficiencyofforestbiomassestimation.Traditionalmethodsofforestbiomassestimationsuchasfieldinventoryandremotesensingrequiresignificanttimeandcost.Theproposedapproachcansignificantlyreducetheneedforfieldinventory,asitcanaccuratelyestimatebiomassusingonlyairbornelaserscanningdata.Thiscansavetimeandcost,aswellasreducetheriskoferrorsandinconsistenciesassociatedwithtraditionalmethods.

Anotheradvantageoftheproposedapproachisitsabilitytoestimatebiomassatafinerspatialresolution.Traditionalmethodsarelimitedbytheresolutionofremotesensingdata,whichcanmakeitdifficulttoaccuratelyestimatebiomassinareaswithhighvariability.Theproposedapproach,however,canestimatebiomassatamuchfinerresolutionduetoitsuseoflaserscanningdata,whichprovidesdetailedinformationontheverticalandhorizontalstructureoftheforest.

Theproposedapproachcanalsohelpimproveforestmanagementdecisionmaking.Accurateandtimelyestimationofforestbiomassiscriticalforforestmanagement,asitprovidesinformationonforesthealth,productivity,andcarbonsequestrationpotential.Theproposedapproachcanprovideforestmanagerswithmoreaccurateandtimelyinformationonthestateoftheforest,whichcanhelpthemmakeinformeddecisionsonissuessuchastimberharvesting,carboncredits,andecosystemrestoration.

However,therearealsosomelimitationstotheproposedapproach.Onelimitationistheneedforhigh-qualitylaserscanningdata.Theaccuracyofthebiomassestimationdependsonthequalityofthelaserscanningdata,whichcanbeaffectedbyfactorssuchascloudcover,vegetationcover,andtopography.Therefore,carefulattentionmustbepaidtothequalityandprocessingofthelaserscanningdatatoensureaccuratebiomassestimation.

Inaddition,theproposedapproachmaynotbesuitableforestimatingbiomassincertainforesttypes.Theapproachwasevaluatedonaconiferousforest,anditisnotclearwhetheritwouldworkaswellinothertypesofforestssuchasdeciduousortropicalforests.Furtherresearchisneededtotesttheapplicabilityoftheapproachindifferentforesttypes.

Inconclusion,theproposedapproachofcombiningdeepneuralnetworkandlaserradartechnologyhasshownpromisingresultsinaccuratelyestimatingforestbiomass.Ithasthepotentialtoimprovetheefficiencyandaccuracyofforestbiomassestimation,aswellasinformforestmanagementdecisionmaking.However,furtherresearchisneededtofullyevaluatetheapplicabilityoftheapproachindifferentforesttypesandunderdifferentenvironmentalconditions。Oneareawheretheproposedapproachcouldbefurtherevaluatedisinitsabilitytoestimatebiomassintropicalforests.Theseforestsareknowntobehighlydiverseandcomplex,withdifferentspeciesandstructuresthatcouldaffecttheaccuracyofbiomassestimation.Inaddition,thepresenceofcloudsanddensecanopiescouldposechallengestotheuseoflaserradartechnology.Therefore,studiescouldbedesignedtoassesstheaccuracyandapplicabilityofthisapproachintropicalforests.

Anotherareawherefurtherresearchisneededisintheevaluationoftheeffectofplotsizeandshapeonbiomassestimationaccuracy.Currently,forestbiomassestimationismainlyconductedatplotlevel,withplotsizeandshapevaryingacrossstudies.Therefore,studiescouldbedesignedtosystematicallyevaluatetheeffectofplotsizeandshapeonbiomassestimationaccuracy,andproviderecommendationsontheoptimalplotdesignforaccurateestimation.

Furthermore,studiescouldbeconductedtoinvestigatethetransferabilityofthedevelopeddeepneuralnetworkmodeltodifferentforesttypesandlocations.Thiswouldinvolvetrainingthemodelwithdatafromonelocationorforesttype,andtestingitsaccuracyinotherlocationsorforesttypes.Theresultscouldprovideinsightsintotherobustnessofthemodelanditsapplicabilityindifferentcontexts.

Finally,theproposedapproachcouldbeevaluatedintermsofitscost-effectivenesscomparedtotraditionalmethodsofforestbiomassestimation.Thiswouldinvolveconductingacost-benefitanalysistodeterminewhethertheaccuracygainsfromtheapproachjustifythecostofimplementingit.Suchananalysiscouldinformdecisionmakingontheadoptionoftheapproachinforestmanagementpractices.

Insummary,whiletheproposedapproachofcombiningdeepneuralnetworkandlaserradartechnologyhasshownpromisingresultsinaccuratelyestimatingforestbiomass,furtherresearchisneededtofullyevaluateitsapplicabilityindifferentforesttypesandunderdifferentenvironmentalconditions.Addressingtheseresearchgapswouldcontributetothedevelopmentofmoreaccurateandefficientmethodsofforestbiomassestimation,andinformforestmanagementpracticesthatpromotesustainableuseofforestresources。Currently,forestbiomassestimationisacriticalcomponentinunderstandingthecarboncycle,globalclimatechange,andforestmanagementpractices.Accurateestimatesofforestbiomasscaninformforestrymanagementpracticesthatpromotesustainableforestresourceuse.However,traditionalmethodsofestimatingforestbiomass,suchasfieldinventoryandsatelliteremotesensing,aretime-consumingandlabor-intensive.Moreover,traditionalmethodsrequiredetailedforestinventorydata,whichisoftendifficulttoobtain,particularlyforremoteorinaccessibleforestlocations.Assuch,thereisagrowinginterestindevelopingmoreefficientandaccuratemethodsforestimatingforestbiomass.

Recentresearchhasshownthatthecombinationofdeepneuralnetworkandlaserradartechnologyhaspromisingpotentialforaccuratelyestimatingforestbiomass.Deepneuralnetworktechnologyisatypeofartificialintelligencethatcanprocesslargeamountsofcomplexdataandprovideaccuratepredictions.Combinedwithlaserradartechnology,alsoknownasLightDetectionandRanging(LiDAR),deepneuralnetworktechnologycanprocesslargeamountsofpreciseandaccuratedatafromforeststoestimateforestbiomass.

Oneoftheadvantagesofthedeepneuralnetworkandlaserradartechnologycombinationisthatitcanoperateremotely,anditcanprovideaccurateestimatesofforestbiomasswithouttheneedforfieldinventorydata.ThetechnologyusesLiDARdatatocreatedetailed3Dforestmaps,whichshowtheheightanddensityoftreesinaforest.Thedeepneuralnetworkisthenusedtoprocessthisdata,anditprovidesaccurateestimatesofforestbiomass.

Furthermore,thecombinationofdeepneuralnetworkandlaserradartechnologyisparticularlyusefulinestimatingforestbiomassfordenseforestcanopies.Incontrasttotraditionalforestinventorymethods,whereitisdifficulttoobtaininventorydatafordenseforestcanopies,thedeepneuralnetworkandlaserradartechnologycanaccuratelyestimateforestbiomassforthesecanopies.Additionally,thetechnologycanprovidemoreaccurateestimatesofforestbiomassinareasthataredifficulttoaccess,suchassteepterrainorremoteareas.

Whilethecombinationofdeepneuralnetworkandlaserradartechnologyhasshownpromisingpotentialintheaccurateestimationofforestbiomass,therearestillseveralresearchgapsthatneedtobeaddressed.Forinstance,furtherresearchisrequiredtoevaluatetheapplicabilityofthistechnologyindifferentforesttypesandunderdifferentenvironmentalconditions.Thetechnologymaynotbeapplicabletoallforesttypes,anditisessentialtoevaluateitsaccuracyindifferentenvironmentalconditions.

Inconclusion,developingaccurateandefficientmethodsforestimatingforestbiomassiscriticalforunderstandingthecarboncycle,globalclimatechange,andforestmanagementpractices.Thecombinationofdeepneuralnetworkandlaserradartechnologyhasshownpromisingpotentialinaccuratelyestimatingforestbiomass,particularlyfordenseforestcanopiesandremoteareas.Nonetheless,furtherresearchisneededtofullyevaluateitsapplicabilityandpotential.Addressingtheseresearchgapswouldcontributetothedevelopmentofmoreaccurateandefficientmethodsofforestbiomassestimation,andinformforestmanagementpracticesthatpromotesustainableforestresourceuse。Forestbiomassestimationhasbecomeacrucialaspectofforestmanagementpracticesglobally.Accurateestimatesofforestbiomassformthebasisofinformeddecision-makingregardingforestresourceuse,conservation,andrestoration.Conventionalforestinventorymethods,suchasfieldandremotesensingtechniques,provideusefulmeasurements.However,thesemethodshavelimitedapplicabilityinremoteareasanddenseforestcanopies,wherethedatacollectionprocessischallenging,time-consumingandexpensive.

Recentadvancementsindeepneuralnetwork(DNN)andlaserradar(LiDAR)technologypresentpromisingsolutionsforaccuratelyestimatingforestbiomassinsuchremoteareas.DNNisasubfieldofmachinelearningthatutilizesartificialneuralnetworkstomodelcomplexandlargedatasets.LiDAR,ontheotherhand,isaremotesensingtechnologythatuseslaserbeamstodetectandmeasurethedistancetoobjectsontheEarth'ssurface.

ThesynergybetweenLiDARandDNNtechnologyhasenabledthedevelopmentofimprovedforestbiomassestimationalgorithms.Thishasledtoanincreaseinaccuracyandefficiencyinforestbiomassestimates,particularlyinremoteandforestedareas.Inthisregard,forestbiomassestimationthroughLiDARhasemergedasapopularmethodfordeterminingforeststructureandbiomassglobally.

SeveralstudieshavetestedtheaccuracyofDNNandLiDARtechnologyinforestbiomassestimation.Forinstance,Rizaldyetal.(2018)incorporatedDNNandLiDARdatainforestinventoryprocessesinIndonesia.Thestudyshowedasignificantimprovementintheaccuracy(byupto15%)ofbiomassestimatescomparedtoconventionalforestinventorymethods.Similarly,Hovietal.(2019)assessedtheaccuracyofDNNandLiDARdatainemulatingfield-basedinventoryforestimatingforestbiomassinFinnishborealforests.TheirresultsshowedthatusingDNNandLiDARdatawasupto40%moreaccuratethanconventionalforestinventorymethods.

Despitethepromisingresultsfromthesestudies,furtherresearchisnecessarytovalidateandenhancetheapplicabilityofDNNandLiDARtechnologyinforestbiomassestimation.Forexample,thereisaneedtoinvestigatetheeffectivenessofthistechnologyindifferentforestbiomesacrossdifferentgeographicalregions.Additionally,researchisnecessarytominimizetheerrorsassociatedwiththeuseofDNNandLiDARtechnology.Theimplementationofsuchresearchwouldensurethatforestsworldwidearemanagedmoreefficientlyandsustainably.

Overall,theintegrationofDNNandLiDARtechnologyrepresentsasignificantadvancementforforestbiomassestimation,especiallyinremoteanddenseforestareas.However,itiscrucialtopursuefurtherresearchanddevelopmenttooptimizetheuseofthistechnologyandimproveitsaccuracyandapplicability.Thiswouldleadtothedevelopmentofmoreaccurateandefficientmethodsforforestbiomassestimationandresourcemanagementpracticesthatpromotesustainableforestresourceuse。Furthermore,theintegrationofDNNandLiDARtechnologycanalsoprovidevaluableinsightsintoforeststructureandcomposition,whichcaninformforestmanagementandconservationpractices.Forinstance,thecombinationofLiDARdataandDNNcanbeusedtoidentifydifferenttreespeciesandestimatetheirrespectivebiomass.Thiscanbebeneficialforforestmanagers,asitprovidesinformationonthecompositionoftheforestandallowsfortailoredmanagementstrategiesthatpromotethegrowthandhealthofspecifictreespecies.

Additionally,theuseofDNNandLiDARtechnologyinforestbiomassestimationcancontributetoeffortsaimedatmitigatingclimatechange.ForestsplayasignificantroleinregulatingtheEarth'sc

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论