空间向量的正交分解及其坐标表示演示文稿_第1页
空间向量的正交分解及其坐标表示演示文稿_第2页
空间向量的正交分解及其坐标表示演示文稿_第3页
空间向量的正交分解及其坐标表示演示文稿_第4页
空间向量的正交分解及其坐标表示演示文稿_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

空间向量的正交分解及其坐标表示演示文稿当前1页,总共25页。空间向量的正交分解及其坐标表示当前2页,总共25页。空间向量基本定理定理:如果三个向量a、b、c不共面,那么对空间任一向量p,存在有序实数组(x,y,z),使得p=___________,其中{a,b,c}叫做空间的一个_____,a,b,c都叫做_______.试一试:空间的基底是唯一的吗?提示由空间向量基本定理可知,任意三个不共面向量都可以组成空间的一个基底,所以空间的基底有无数个,因此不唯一.自学导引1.xa+yb+zc基底基向量当前3页,总共25页。空间向量的正交分解及其坐标表示(1)单位正交基底:三个有公共起点O的两两垂直的单位向量e1,e2,e3称为单位正交基底.(2)空间直角坐标系:以e1,e2,e3的公共起点O为原点,分别以e1,e2,e3的方向为x轴,y轴,z轴的正方向建立空间直角坐标系O-xyz.2.当前4页,总共25页。xe1+ye2+ze3x,y,zp=(x,y,z)当前5页,总共25页。试一试:你能写出空间直角坐标系,坐标轴或坐标平面上的向量的坐标吗?当前6页,总共25页。基底的选择为了简便,在具体问题中选择基底时要注意两个方面:一是所选的基向量能方便地表示其他向量;二是各基向量的模及其夹角已知或易求.选定基底后,各基向量的系数组成的有序实数组就是向量在该基底下的坐标.同一基底下的向量运算可以简化为坐标进行.一般情况下,选的基底是单位正交基底.空间向量的正交分解及其坐标表示的理解(1)建立空间直角坐标系O-xyz.分别沿x轴、y轴、z轴的正方向引单位向量i,j,k,则{i,j,k}叫做单位正交基底.单位向量i,j,k都叫做坐标向量.名师点睛1.2.当前7页,总共25页。(2)在空间直角坐标系中,已知任一向量a,根据空间向量分解定理,存在唯一实数组(a1,a2,a3)使a=a1i+a2j+a3k,a1i,a2j,a3k分别为向量a在i,j,k方向上的分向量,有序实数组(a1,a2,a3)叫做向量a在此直角坐标系中的坐标,可记作a=(a1,a2,a3).(3)空间任一点P的坐标的确定,如图所示,过点P作面xOy的垂线,垂足为P′,在面xOy中,过P′分别作x轴、y轴的垂线,垂足分别为A,C,则|x|=P′C,|y|=AP′,|z|=PP′.当前8页,总共25页。空间中一点P(a,b,c)关于xOy面、xOz面、yOz面、x轴、y轴、z轴及坐标原点对称的点的坐标分别为P1(a,b,-c),P2(a,-b,c),P3(-a,b,c),P4(a,-b,-c),P5(-a,b,-c),P6(-a,-b,c),P7(-a,-b,-c).当前9页,总共25页。题型一基底的判断若{a,b,c}是空间的一个基底,判断{a+b,b+c,c+a}能否作为该空间的一个基底.[思路探索]可先用反证法判断a+b,b+c,c+a是否共面,若不共面,则可作为一个基底,否则不能作为一个基底.【例1】当前10页,总共25页。解假设a+b,b+c,c+a共面,则存在实数λ,μ使得a+b=λ(b+c)+μ(c+a),∴a+b=λb+μa+(λ+μ)c.∵{a,b,c}为基底,∴a,b,c不共面,当前11页,总共25页。规律方法判断三个向量a,b,c能否作为基底,关键是理解基底的概念,只有空间中三个不共面的向量才能构成空间向量的一个基底.判断a,b,c三个向量是否共面,常用反证法,即判断三个向量是否满足a=λb+μb,若满足则共面,若不满足则不共面.当前12页,总共25页。

以下四个命题中正确的是________.①空间的任何一个向量都可用三个给定向量表示;②若{a,b,c}为空间的一个基底,则a,b,c全不是零向量;③如果向量a,b与任何向量都不能构成空间的一个基底,则一定有a与b共线;④任何三个不共线的向量都可构成空间的一个基底.解析因为空间中的任何一个向量都可用其他三个不共面的向量来表示,故①不正确;②正确;由空间向量基本定理可知只有不共线的两向量才可以做基底,故③正确;空间向量基底是由三个不共面的向量组成的,故④不正确.答案②③【变式1】当前13页,总共25页。

题型二

用基底表示向量【例2】当前14页,总共25页。当前15页,总共25页。规律方法(1)空间中的任一向量均可用一组不共面的向量来表示,只要基底选定,这一向量用基底表达的形式是唯一的;(2)用基底来表示空间中的向量是向量解决数学问题的关键,解题时注意三角形法则或平行四边形法则的应用.当前16页,总共25页。【变式2】当前17页,总共25页。当前18页,总共25页。

题型三

求空间向量的坐标【例3】当前19页,总共25页。当前20页,总共25页。【题后反思】根据空间向量基本定理,任一向量都可表示为基向量的线性关系式.三个基向量的对应系数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论