版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
关于用空间向量求空间角第一页,共二十二页,编辑于2023年,星期二复习回顾直线的方向向量:两点平面的法向量:三点两线一方程设a=(a1,a2,a3),b=(b1,b2,b3)则(1)a·b=
.
a1b1+a2b2+a3b3第二页,共二十二页,编辑于2023年,星期二设直线l1、l2的方向向量分别为a、b,平面α、β的法向量分别为n1、n2.则⑴l1∥l2或l1与l2重合⇔
⇔
.
⑵l1⊥l2⇔
⇔
.
⑶α∥β或α与β重合⇔
⇔
.
⑷α⊥
β⇔
⇔
.
⑸l∥α或l⊂α⇔
⇔
.
⑹l⊥
α⇔
⇔
.复习回顾a∥ba=
tba⊥ba·b
=
0n1∥n2n1=tn2n1=tan1∥an1⊥n2n1·
n2=
0n1⊥
an1·a
=
0第三页,共二十二页,编辑于2023年,星期二引例:求二面角M-BC-D的平面角的正切值;求CN与平面ABCD所成角的正切值;求CN与BD所成角的余弦值;(4)求平面SBC与SDC所成角的正弦值
第四页,共二十二页,编辑于2023年,星期二范围:
一、线线角:异面直线所成的锐角或直角思考:空间向量的夹角与异面直线的夹角有什么关系?结论:第五页,共二十二页,编辑于2023年,星期二xzy②向量法ADCBD1C1B1A1E1F1方法小结①传统法:平移例1.如图所示的正方体中,已知F1与E1为四等分点,求异面直线DF1与BE1的夹角余弦值?第六页,共二十二页,编辑于2023年,星期二所以与所成角的余弦值为解:如图所示,建立空间直角坐标系,如图所示,设则:
所以:练习:第七页,共二十二页,编辑于2023年,星期二[悟一法]
利用向量求异面直线所成的角的步骤为:
(1)确定空间两条直线的方向向量;
(2)求两个向量夹角的余弦值;
(3)确定线线角与向量夹角的关系;当向量夹角为锐角时,即为两直线的夹角;当向量夹角为钝角时,两直线的夹角为向量夹角的补角.第八页,共二十二页,编辑于2023年,星期二直线与平面所成角的范围:
结论:二、线面角:直线和直线在平面内的射影所成的角,叫做这条直线和这个平面所成的角.思考:如何用空间向量的夹角表示线面角呢?AOB第九页,共二十二页,编辑于2023年,星期二例2、如图,在正方体ABCD-A1B1C1D1中,求A1B与平面A1B1CD所成的角ABCDA1B1C1D1O①向量法②
传统法第十页,共二十二页,编辑于2023年,星期二N解:如图建立坐标系A-xyz,则即在长方体中,练习:第十一页,共二十二页,编辑于2023年,星期二N又在长方体中,练习:第十二页,共二十二页,编辑于2023年,星期二[悟一法]
利用向量法求直线与平面所成角的步骤为:
(1)确定直线的方向向量和平面的法向量;
(2)求两个向量夹角的余弦值;
(3)确定线面角与向量夹角的关系:向量夹角为锐角时,线面角与这个夹角互余;向量夹角为钝角时,线面角等于这个夹角减去90°.第十三页,共二十二页,编辑于2023年,星期二二面角的平面角必须满足:3)角的边都要垂直于二面角的棱1)角的顶点在棱上2)角的两边分别在两个面内
以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。10lOAB三、面面角:第十四页,共二十二页,编辑于2023年,星期二ll三、面面角:向量法关键:观察二面角的范围第十五页,共二十二页,编辑于2023年,星期二①证明:以为正交基底,建立空间直角坐标系如图。则可得例3.已知正方体的边长为2,O为AC和BD的交点,M为的中点(1)求证:直线面MAC;
(2)求二面角的余弦值.B1A1C1D1DCBAOMxyz第十六页,共二十二页,编辑于2023年,星期二②B1A1C1D1DCBAOMxyz由图可知二面角为锐角第十七页,共二十二页,编辑于2023年,星期二[悟一法]
利用法向量求二面角的步骤
(1)确定二个平面的法向量;
(2)求两个法向量夹角的余弦值;
(3)确定二面角的范围;二面角的范围要通过图形观察,法向量一般不能体现.第十八页,共二十二页,编辑于2023年,星期二练习:如图,已知:直角梯形OABC中,OA∥BC,∠AOC=90°,SO⊥面OABC,且
OS=OC=BC=1,OA=2。求:⑴异面直线SA和OB所成的角的余弦值,⑵OS与面SAB所成角α的正弦值,⑶二面角B-AS-O的余弦值。则A(2,0,0);于是我们有OABCS解:如图建立直角坐标系,xyz=(2,0,-1);=(-1,1,0);=(1,1,0);=(0,0,1);B(1,1,0);S(0,0,1),C(0,1,0);O(0,0,0);第十九页,共二十二页,编辑于2023年,星期二令x=1,则y=1,z=2;从而(2)设面SAB的法向量显然有OABCSxyz第二十页,共二十二页,编辑于2023年,星期二⑵.由⑴知面SAB的法向量=(1,1,2)
又∵OC⊥面AOS
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年建筑安装工程项目合同
- 力课件教学课件
- 2024年广告代理合作协议
- 2024年工程咨询与技术服务合作协议
- 2024年度公司用车管理协议
- 2024年度建筑工程设计、施工购销合同
- 2024年度35kv高压线路施工合同
- 2024年度某影视公司与某投资公司关于某电影项目融资的合同
- 公司年会的演讲稿模板八篇
- 为世界无车日活动宣传标语(155句)
- 民用无人机操控员执照(CAAC)考试复习重点题及答案
- 疼痛科整体规划和发展方案
- 2024年中国南水北调集团水网水务投资限公司及下属单位社会招聘高频难、易错点500题模拟试题附带答案详解
- (新版)食品生产企业食品安全员理论考试题库500题(含答案)
- 七年级语文上册第13课《纪念白求恩》公开课一等奖创新教案
- 统编版语文六年级上册第八单元大单元整体教学设计
- 教师个人业务学习笔记(41篇)
- 2025年高考语文复习备考复习策略讲座
- 数学史上的三次数学危机
- 2024年水电暖安装承包合同
- 缺乳(乳汁淤积)产妇的中医护理
评论
0/150
提交评论