版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精第42讲直线、平面垂直的判定及其性质考纲要求考情分析命题趋势1.能以立体几何中的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质和判定定理.2.能运用公理、定理和已获得的结论证明一些有关空间图形的垂直关系的简单命题.2016·全国卷Ⅰ,182016·全国卷Ⅱ,192016·江苏卷,162016·浙江卷,18与直线、平面垂直有关的命题判断,线线、线面、面面垂直的证明,直线与平面所成的角的计算,求解二面角大小,由线面垂直或面面垂直探求动点的位置。分值:5~6分1.直线与平面垂直(1)直线和平面垂直的定义如果一条直线l与平面α内的__任意一条__直线都垂直,就说直线l与平面α互相垂直.(2)判定定理与性质定理文字语言图形语言符号语言判定定理如果一条直线与一个平面内的__两条相交直线__都垂直,则该直线与此平面垂直eq\b\lc\\rc\}(\a\vs4\al\co1(__a,b⊂α__,__a∩b=O__,__l⊥a__,__l⊥b__))⇒l⊥α性质定理垂直于同一个平面的两条直线__平行__eq\b\lc\\rc\}(\a\vs4\al\co1(__a⊥α__,__b⊥α__))⇒a∥b2.平面与平面垂直(1)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是__直二面角__,就说这两个平面互相垂直.(2)判定定理和性质定理文字语言图形语言符号语言判定定理一个平面过另一个平面的一条__垂线__,则这两个平面互相垂直eq\b\lc\\rc\}(\a\vs4\al\co1(__l⊂β__,__l⊥α__))⇒α⊥β性质定理两个平面互相垂直,则一个平面内垂直于__交线__的直线与另一个平面垂直eq\b\lc\\rc\}(\a\vs4\al\co1(__α⊥β__,__l⊂β__,__α∩β=a__,__l⊥a__))⇒l⊥α1.思维辨析(在括号内打“√”或“×”).(1)直线l与平面α内无数条直线都垂直,则l⊥α。(×)(2)过一点作已知直线的垂面有且只有一个.(√)(3)若两条直线垂直,则这两条直线相交.(×)(4)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一平面.(×)(5)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β。(×)解析(1)错误.直线l与α内两条相交直线都垂直才有l⊥α。(2)正确.过一点可以作两条相交直线都垂直于已知直线,而这两条相交直线可确定一个平面,此平面与直线垂直.(3)错误.两条直线垂直,这两条直线可能相交,也可能异面.(4)错误.两个平面垂直,有一条交线,一个平面内垂直于交线的直线垂直于另一个平面,而不是任意一条直线.(5)错误.α内的一条直线如果与β内的两条相交直线都垂直才能线面垂直,从而面面垂直.2.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的(A)A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件解析由面面垂直的性质定理可知,当α⊥β时,b⊥α。又因为a⊂α,则a⊥b;如果a∥m,a⊥b,不能得到α⊥β,故“α⊥β”是“a⊥b"的充分不必要条件.故选A.3.已知m和n是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m⊥β的是(C)A.α⊥β且m⊂α B.α⊥β且m∥αC.m∥n且n⊥β D.m⊥n,n⊂α且α∥β解析α⊥β,且m⊂α⇒m⊂β或m∥β或m与β相交,故A项不成立;α⊥β,且m∥α⇒m⊂β或m∥β或m与β相交,故B项不成立;m∥n,且n⊥β⇒m⊥β。故C项成立;m⊥n,n⊂α,且α∥β,知m⊥β不成立,故D项不成立,故选C.4.PD垂直于正方形ABCD所在的平面,连接PB,PC,PA,AC,BD,则一定互相垂直的平面有__7__对.解析平面PAD、平面PBD、平面PCD都垂直于平面ABCD,平面PAD⊥平面PCD,平面PCD⊥平面PBC,平面PAD⊥平面PAB,平面PAC⊥平面PBD,共有7对.5.在三棱锥P-ABC中,点P在平面ABC内的射影为点O.(1)若PA=PB=PC,则点O是△ABC的__外__心;(2)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的__垂__心.解析(1)若PA=PB=PC,由勾股定理易得OA=OB=OC,故O是△ABC的外心;(2)由PA⊥PB,PC⊥PA,得PA⊥平面PBC,则PA⊥BC.又由PO⊥平面ABC知PO⊥BC,所以BC⊥平面PAO,则AO⊥BC,同理得BO⊥AC,CO⊥AB,故O是△ABC的垂心.一直线与平面垂直的判定与性质(1)证明直线和平面垂直的常用方法:①判定定理;②垂直于平面的传递性(a∥b,a⊥α⇒b⊥α);③面面平行的性质(a⊥α,α∥β⇒a⊥β);④面面垂直的性质.(2)证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.(3)线面垂直的性质常用来证明线线垂直.【例1】如图,在正方体ABCD-A1B1C1D1中,E为棱C1D1的中点,F为棱BC的中点(1)求证:直线AE⊥直线DA1;(2)在线段AA1上求一点G,使得直线AE⊥平面DFG.解析(1)证明:由正方体的性质可知,DA1⊥AD1,DA1⊥AB,又AB∩AD1=A,∴DA1⊥平面ABC1D1,又AE⊂平面ABC1D1,∴DA1⊥AE.(2)所求G点即为A1点,证明如下:由(1)可知AE⊥DA1,取CD的中点H,连接AH,EH,由DF⊥AH,DF⊥EH,AH∩EH=H,可证DF⊥平面AHE,∵AE⊂平面AHE,∴DF⊥AE。又DF∩A1D=D,∴AE⊥平面DFA1,即AE⊥平面DFG。二平面与平面垂直的判定与性质(1)判定面面垂直的方法:①面面垂直的定义;②面面垂直的判定定理(a⊥β,a⊂α⇒α⊥β).(2)在已知平面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.【例2】已知三棱柱A1B1C1-ABC的侧棱与底面成60°角,底面是等边三角形,侧面B1C1CB是菱形且与底面垂直,求证:AC1⊥B证明过C1作C1H⊥BC于H,连接AH,又∵侧面B1C1CB⊥底面ABC侧面B1C1CB∩底面ABC=BC∴C1H⊥底面ABC.∴侧棱CC1与底面ABC所成角,即为∠C1CH=60°,在Rt△C1CH中,CH=eq\f(1,2)CC1,又∵CC1=BC,∴CH=eq\f(1,2)BC,即H为BC的中点,∴在等边△ABC中,AH⊥BC,又∵C1H⊥BC,AH∩C1H=H,∴BC⊥平面AC1H,又∵AC1⊂平面AC1H,∴AC1⊥BC.三垂直关系中的探索性问题解决垂直关系中的探索性问题的方法同“平行关系中的探索性问题”的规律方法一样,一般是先探求点的位置,多为线段的中点或某个等分点,然后给出符合要求的证明.【例3】如图,在三棱台ABC-DEF中,CF⊥平面DEF,AB⊥BC.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在,请确定G点的位置;若不存在,请说明理由.解析(1)证明:在三棱台ABC-DEF中,AC∥DF,AC⊂平面ACE,DF⊄平面ACE,∴DF∥平面ACE。又∵DF⊂平面DEF,平面ACE∩平面DEF=a,∴DF∥a。(2)线段BE上存在点G,且BG=eq\f(1,3)BE,使得平面DFG⊥平面CDE。证明如下:取CE的中点O,连接FO并延长交BE于点G.连接GD,∴CF=EF,∴GF⊥CE.在三棱台ABC-DEF中,由AB⊥BC得DE⊥EF.由CF⊥平面DEF,得CF⊥DE.又CF∩EF=F,∴DE⊥平面CBEF,∴DE⊥GF.又CE∩DE=E,∴GF⊥平面CDE.又GF⊂平面DFG,∴平面DFG⊥平面CDE.此时,如平面图所示,∵O为CE的中点,EF=CF=2BC,易证△HOC≌△FOE,∴HB=BC=eq\f(1,2)EF。由△HGB∽△FGE可知eq\f(BG,GE)=eq\f(1,2),即BG=eq\f(1,3)BE。1.(2018·山东青岛模拟)设a,b是两条不同的直线,α,β是两个不同的平面,则能得出a⊥b的是(C)A.a⊥α,b∥β,α⊥β B.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥β D.a⊂α,b∥β,α⊥β解析对于C项,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b,故选C.2.(2016·浙江卷)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则(C)A.m∥l B.m∥nC.n⊥l D.m⊥n解析∵α∩β=l,∴l⊂β,∵n⊥β,∴n⊥l.3.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE。证明(1)在四棱锥P-ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴PA⊥CD.∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC,而AE⊂平面PAC,∴CD⊥AE。(2)由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.而PD⊂平面PCD,∴AE⊥PD.∵PA⊥底面ABCD,∴PA⊥AB.又∵AB⊥AD且PA∩AD=A,∴AB⊥平面PAD,而PD⊂平面PAD,∴AB⊥PD.又∵AB∩AE=A,∴PD⊥平面ABE.4.如图,在四棱锥S-ABCD中,平面SAD⊥平面ABCD,四边形ABCD为正方形,且P为AD的中点,Q为SB的中点.(1)求证:CD⊥平面SAD;(2)求证:PQ∥平面SCD;(3)若SA=SD,M为BC的中点,在棱SC上是否存在点N,使得平面DMN⊥平面ABCD?并证明你的结论.解析(1)证明:因为四边形ABCD为正方形,所以CD⊥AD.又平面SAD⊥平面ABCD,且平面SAD∩平面ABCD=AD,所以CD⊥平面SAD.(2)证明:取SC的中点R,连接QR,DR.由题意知,PD∥BC且PD=eq\f(1,2)BC.在△SBC中,Q为SB的中点,R为SC的中点,所以QR∥BC且QR=eq\f(1,2)BC.所以QR∥PD且QR=PD,则四边形PDRQ为平行四边形,所以PQ∥DR。又PQ⊄平面SCD,DR⊂平面SCD,所以PQ∥平面SCD.(3)存在点N为SC的中点,使得平面DMN⊥平面ABCD.连接PC,DM交于点O,连接PM,SP,NM,ND,NO,因为PD∥CM,且PD=CM,所以四边形PMCD为平行四边形,所以PO=CO。又因为N为SC的中点,所以NO∥SP.易知SP⊥AD,平面SAD⊥平面ABCD,平面SAD∩平面ABCD=AD,所以SP⊥平面ABCD,所以NO⊥平面ABCD.因为NO⊂平面DMN,所以平面DMN⊥平面ABCD.易错点联想不到已学定理错因分析:已知条件中给出了线面垂直,求证的是线线平行,若忽略线面垂直的性质定理,则觉得论证无从下手,从而造成解题困难.【例1】在正方体ABCD-A1B1C1D1中,点M,N分别在BD,B1C上,且MN⊥BD,MN⊥B1C,求证:MN∥证明连接A1D,A1B,AC,∵MN⊥B1C,B1C∥A1D,∴MN⊥A1又∵MN⊥BD,BD∩A1D=D,∴MN⊥平面A1BD.∵CC1⊥底面ABCD,∴CC1⊥BD.又∵BD⊥AC,AC∩CC1=C,∴BD⊥平面ACC1.∴BD⊥AC1。同理AC1⊥A1B.又A1B∩BD=B,∴AC1⊥平面A1BD.又∵MN⊥平面A1BD,∴MN∥AC1.【跟踪训练1】如图,PA垂直于圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥BC.正确结论的个数为(C)A.1 B.2C.3 D.4解析∵AB是圆O的直径,∴AC⊥BC,又PA⊥面ABC,故PA⊥BC,且PA∩AC=A,∴BC⊥面PAC,∴BC⊥AF.又AF⊥PC,且PC∩BC=C,∴AF⊥面PBC,故AF⊥PB.又AE⊥PB,且AF∩AE=A,∴PB⊥面AEF,从而EF⊥PB,故①②③正确.若AE⊥BC,则可证AE⊥面PBC,则AE∥AF,这是不可能的,选C.课时达标第42讲[解密考纲]对直线、平面垂直的判定与性质定理的初步考查一般以选择题、填空题的形式出现,难度不大;综合应用直线、平面垂直的判定与性质常以解答题为主,难度中等.一、选择题1.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是(D)A.AB∥m B.AC⊥mC.AB∥β D.AC⊥β解析如图所示,AB∥l∥m;AC⊥l,m∥l⇒AC⊥m;AB∥l⇒AB∥β,只有D项不一定成立,故选D.2.在空间中,l,m,n,a,b表示直线,α表示平面,则下列命题正确的是(D)A.若l∥α,m⊥l,则m⊥α B.若l⊥m,m⊥n,则l∥nC.若a⊥α,a⊥b,则b∥α D.若l⊥α,l∥a,则a⊥α解析对于A项,m与α位置关系不确定,故A项错;对于B项,当l与m,m与n为异面垂直时,l与n可能异面或相交,故B项错;对于C项,也可能b⊂α,故C项错;对于D项,由线面垂直的定义可知正确.3.(2018·江西南昌模拟)已知m,n为异面直线,m⊥平面α,n⊥平面β。直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则(D)A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l解析由于m,n为异面直线,m⊥平面α,n⊥平面β,则平面α与平面β必相交,但不一定垂直,且交线垂直于直线m,n,又直线l满足l⊥m,l⊥n,则交线平行于l.4.设a,b是夹角为30°的异面直线,则满足条件“a⊂α,b⊂β,且α⊥β"的平面α,β(D)A.不存在 B.有且只有一对C.有且只有两对 D.有无数对解析过直线a的平面α有无数个,当平面α与直线b平行时,两直线的公垂线与b确定的平面β⊥α,当平面α与b相交时,过交点作平面α的垂线与b确定的平面β⊥α。故选D.5.(2018·宁夏银川一模)如图,在正方形ABCD中,E,F分别是BC,CD的中点,G是EF的中点,现沿AE,AF及EF把这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H,那么,在这个空间图形中必有(A)A.AH⊥平面EFH B.AG⊥平面EFHC.HF⊥平面AEF D.HG⊥平面AEF解析由平面图形得AH⊥HE,AH⊥HF,又HE∩HF=H,∴AH⊥平面HEF,故选A.6.(2018·陕西宝鸡质检)对于四面体ABCD,给出下列四个命题:①若AB=AC,BD=CD,则BC⊥AD;②若AB=CD,AC=BD,则BC⊥AD;③若AB⊥AC,BD⊥CD,则BC⊥AD;④若AB⊥CD,AC⊥BD,则BC⊥AD.其中为真命题的是(D)A.①② B.②③C.②④ D.①④解析①如图,取BC的中点M,连接AM,DM,由AB=AC⇒AM⊥BC,同理DM⊥BC⇒BC⊥平面AMD,而AD⊂平面AMD,故BC⊥AD.④设A在平面BCD内的射影为O,连接BO,CO,DO,由AB⊥CD⇒BO⊥CD,由AC⊥BD⇒CO⊥BD⇒O为△BCD的垂心⇒DO⊥BC⇒AD⊥BC.二、填空题7.若α,β是两个相交平面,m为一条直线,则下列命题中,所有真命题的序号为__②④__.①若m⊥α,则在β内一定不存在与m平行的直线;②若m⊥α,则在β内一定存在无数条直线与m垂直;③若m⊂α,则在β内不一定存在与m垂直的直线;④若m⊂α,则在β内一定存在与m垂直的直线.解析对于①,若m⊥α,如果α,β互相垂直,则在平面β内存在与m平行的直线,故①错误;对于②,若m⊥α,则m垂直于平面α内的所有直线,故在平面β内一定存在无数条直线与m垂直,故②正确;对于③④,若m⊂α,则在平面β内一定存在与m垂直的直线,故③错误,④正确.8.(2018·吉林长春模拟)如图所示,在直角梯形ABCD中,BC⊥DC,AE⊥DC,N,M分别是AD,BE的中点,将三角形ADE沿AE折起,下列说法正确的是__①②__(填上所有正确的序号).①不论D折至何位置(不在平面ABC内)都有MN∥平面DEC;②不论D折至何位置都有MN⊥AE;③不论D折至何位置(不在平面ABC内)都有MN∥AB.解析①如图,分别取EC,DE的中点P,Q,由已知易知四边形MNQP为平行四边形,则MN∥PQ,又PQ⊂平面DEC,故MN∥平面DEC,①正确;②取AE的中点O,易证NO⊥AE,MO⊥AE。故AE⊥平面MNO,又MN⊂平面MNO,则AE⊥MN,②正确;③∵D∉平面ABC,∴N∉平面ABC,又A,B,M∈平面ABC,∴MN与AB异面,③错误.9.如图,在直三棱柱ABC-A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的动点,AB1,DF交于点E,要使AB1⊥平面C1DF,则线段B1F的长为__eq\f(1,2)__.解析设B1F=x,因为AB1⊥平面C1DFDF⊂平面C1DF,所以AB1⊥DF.由已知可以得A1B1=eq\r(2)。设Rt△AA1B斜边AB1上的高为h,则DE=eq\f(1,2)h.又2×2eq\r(2)=heq\r(22+\r(2)2),所以h=eq\f(2\r(3),3),DE=eq\f(\r(3),3).在Rt△DB1E中,B1E=eq\r(\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)))2-\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(3),3)))2)=eq\f(\r(6),6)。由面积相等得eq\f(\r(6),6)×eq\r(x2+\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)))2)=eq\f(\r(2),2)x,得x=eq\f(1,2).即线段B1F的长为eq\f(1,2).三、解答题10.如图,在△ABC中,∠ABC=90°,D是AC的中点,S是△ABC所在平面外一点,且SA=SB=SC.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.证明(1)因为SA=SC,D是AC的中点,所以SD⊥AC.在Rt△ABC中,AD=BD,又SA=SB,SD=SD,所以△ADS≌△BDS,所以SD⊥BD.又AC∩BD=D,所以SD⊥平面ABC.(2)因为AB=BC,D为AC的中点,所以BD⊥AC.由(1)知SD⊥BD,又SD∩AC=D,所以BD⊥平面SAC.11.(2018·河南郑州模拟)如图,已知三棱柱ABC-A′B′C′的侧棱垂直于底面,AB=AC,∠BAC=90°,点M,N分别为A′B和B′C′的中点.(1)证明:MN∥平面AA′C′C;(2)设AB=λAA′,当λ为何值时,CN⊥平面A′MN,试证明你的结论.解析(1)证明:如图,取A′B′的中点E,连接ME,NE.因为E,N分别为A′B′和B′C′的中点,所以NE∥A′C′,ME∥BB′∥AA′.又A′C′⊂平面AA′C′C,NE⊄平面AA′C′C,所以NE∥平面AA′C′C,同理ME∥平面AA′C′C,又EM∩EN=E,所以平面MNE∥平面AA′C′C,因为MN⊂平面MNE,所以MN∥平面AA′C′C.(2)当λ=eq\r(2)时,CN⊥平面A′MN,证明如下:连接BN,设AA′=a,则AB=λAA′=λa,由题意知BC=eq\r(2)λa,CN=BN=eq\r(a2+\f(1,2)λ2a2),因为三棱柱ABC-A′B′C′的侧棱垂直于底面,所以平面A′B′C′⊥平面BB′C′C,因为AB=AC,点N是B′C′
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园工作总结童年记忆永不磨灭
- 健康会所前台工作感受
- 水处理行业助理工作总结
- 文化娱乐行业员工绩效考核实践
- 2023-2024学年浙江省杭州四中高三(下)第一次训练地理试卷
- 2021年江苏省宿迁市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2021年广东省韶关市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2024年安徽省合肥市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2021年江西省鹰潭市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 《心理学与读心术》课件
- 2025年林权抵押合同范本
- 2024年北师大版四年级数学上学期学业水平测试 期末卷(含答案)
- 智能检测与监测技术-智能建造技术专02课件讲解
- 2025蛇年一年级寒假作业创意与寓意齐【高清可打印】
- 多系统萎缩鉴别及治疗
- 设备的使用和维护管理制度模版(3篇)
- 浙江省宁波市慈溪市2023-2024学年高三上学期语文期末测试试卷
- 草学类专业生涯发展展示
- 2024年广东省公务员录用考试《行测》真题及解析
- 辅导员年度述职报告
- 麻风病防治知识课件
评论
0/150
提交评论