




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Example:Fischer-TropschReactorIntroduction: EnergyChallenges Fischer-TropschReactionInitialdesignF-TReactorSelectionDesignofSlurryReactor
Humanity’sTopTenProblems
fornext50years
ENERGYWATERFOODENVIRONMENTPOVERTYTERRORISM&WARDISEASEEDUCATIONDEMOCRACYPOPULATION2004 6.5 BillionPeople2050 ~10 BillionPeopleR.E.Smalley,RiceUniversityGrandChallengesforEngineering
(Feb15,2008)
MakesolarenergyeconomicalProvideenergyfromnuclearfusionDevelopcarbonsequestrationmethodsManagethenitrogencycleRestoreandimproveurbaninfrastructureAdvancepersonalizedlearningEngineerbettermedicinesAdvancehealthinformaticsProvideaccessacleanwaterEnhancevirtualrealityReverseengineerthebrainPreventnuclearterrorSecurecyberspaceEngineertoolsforscientificdiscoveryReservesofFossilFuelBP2005FossilFuel:NonconventionalNaturalBitumeninAlberta,Canada:300to1700BbblExtraHeavyOilinVenezuela:1000to3000BbblOilShaleintheUS:1000BbblHydrateintheUS(USGS1997):200,000Trillioncf(conventionalgas,1400Trillioncf)HydrocarbonForever? TheStoneAgedidnotendforlackofstone,andtheOilAgewillendlongbeforetheworldrunsoutofoil SheikZakiYamaniCivilizationasweknowitwillcometoanendsometimeinthiscenturyunlesswecanfindawaytolivewithoutfossilfuels. DavidGoodstein.OutofGas,2004
DirectObservationsofRecentClimateChange
GobalmeantemperatureGlobalaveragesealevelNorthernhemisphereSnowcover165,000TWofsunlighthittheearthRenewableEnergySolar:
Globalmean:168W/m2Totalinsolation:165PWWind:
~2%oftotalinsolation=3.3PW1%oftotal=33TWBiomassLimitedsupply EnergyfromtheSunFossilFuelH2OilNaturalGasCoalBiomassSolarCellWindShorttermLongtermShorttermExistingtechnologyChallengesforTransportationGas-To-Liquid
CoalliquefactionandCO2sequestrationBiomassFuelCellCH4toLiquid:DirectConversionMajorchallengesCH4isverystableanditisveryhardtobreaktheC-Hbond(kinetics)ProductismoreactivethanCH4,it’sveryhardtoachievehighselectivity(thermodynamics)ExamplesPartialoxidationtomethanol:CH4+1/2O2=CH3OHCH4toaromatics:CH4=>Benzene,toluene,xylene,+H2CH4toLiquid:IndirectConversionSyngasasintermediateCH4tosyngas(CO+H2)Steamreforming:CH4+H2O=CO+3H2Partialoxidation:CH4+1/2O2=CO+2H2AutothermalreformingDryreforming:CH4+CO2=2CO+2H2SyngastoliquidFisher-TropschsynthesisMethanol:CO+2H2=CH3OHDimethylether:2CO+4H2=CH3OCH3+H2OOtherindirectrouteIntegratedBiorefineryElementsCoalLiquefactionDirectrouteHighpressurehydrogenationIndirectrouteGasificationtomakesyngasSyngastoliquidfuels,chemicalsCO2SequestrationEnergyfromtheSunFossilFuelH2OilNaturalGasCoalBiomassSolarCellWindShorttermLongtermShorttermExistingtechnologyFTReactorFuelCellFischer-TropschReactionDiscoveredinGermanyin1926 CO+2H2=“-CH2-”+H2O+170kJCommercializedin1930sUpto600,000t/yinGermanyduringWWIIMajordevelopmentinSouthAfricain1970sSignificantnewattentionsince~2000Example:Fischer-TropschReactorIntroduction: EnergyChallenges Fischer-TropschReactionInitialdesignF-TReactorSelectionDesignofSlurryReactor
F-Treaction:scaleandinitialestimationTypicalplantsize:50000bpd~2.5MMton/yAssumingSTY=2x10-6molCO/cm3.sReactorsize:three6.5m(D)x32m(H)FTreactorInitialdesign.xlsxExample:Fischer-TropschReactorIntroduction: EnergyChallenges Fischer-TropschReactionInitialdesignF-TReactorSelectionDesignofSlurryReactor
CharacteristicsofF-TReactionLargescaleFuelproductionEconomyofscaleHighlyExothermic
CO+2H2=“-CH2-”+H2O+170kJGas-liquidmasstransferEconomyofScaleCapex~V0.6Productivity~VProductionCost=OPEX+CAPEX/PVCostF-Treaction:ReactionheatReactionheat: CO+2H2=“-CH2-”+H2O+170kJSelectivitysensitivetoT:
Shorterchainlength; higherCH4yield; catalystdeactivationAdiabatictemperatureincrease:1600CTotalheatreleaserate:~1000MWfora50000bpdplantF-TReactorSelection:
Reactorw/GoodThermalCapacity/StabilityStirredtankBubblecolumnSlurryFluidizationbedMulti-tubeF-TReactor:Multi-tubeAdvantages(Pros)Disadvantages(Cons)Easytoscale-upCanbeusedoverwidetemperaturerangeNoproblemseparatingliquidproductsfromcatalystLossofactivityisnotseriousiftemporaryH2SupsetExpensivetoconstructHighgasflowrateduetohighrecycleHighpressuredropHighoperatingcost(compressorsforrecycling)InternaldiffusioncontrolduetothelargecatalystparticlesizeLaborintensiveforcatalystloading/reactormaintenanceRadialandaxialtemperatureprofileF-TReactor:SlurryAdvantages(Pros)Disadvantages(Cons)CheapertoconstructLowpressuredropEasycatalystloading/replacementUniformtemperaturedistributionSmallparticlesizeleadingtohighercatalystactivitypermassofcatalystCatalystseparationLowcatalystloadingGas-liquidmasstransfer(hugeamountofgasneedtobetransferredfromgastoliquid)Operatingtemperaturelimitation(lowtemperatureliquidbecometoviscouswhilehightemperature(>280C)leadstocracking)Scale-upknowledgelimited
F-TReactor:FluidizationBedAdvantages(Pros)Disadvantages(Cons)GoodheattransferleadingtosmallerheattransferareaneededCheapertoconstructLowpressuredropUniformtemperaturedistribution(<2C)Easycatalystloading/replacementSmallparticlesizeleadingtohighercatalystactivitypermassofcatalystMorecomplextooperate,particularlyforcirculatingfluidizedbedLowcatalystloadingCatalystseparationCatalystlossatcycloneErosioncausedbyhighvelocitycatalystparticlesNotsuitableforwaxproductionExample:Fischer-TropschReactorIntroduction: EnergyChallenges Fischer-TropschReactionInitialdesignF-TReactorSelectionDesignofSlurryReactor
DesignofSlurryReactorModel-basedreactordesignandscaleupDualapproach:SmalllabreactortostudyreactionkineticsMock-upunitFlowregimetodevelopreactorflowmodelFluiddynamics;PhaseratioMasstransfer:Inter-phase(G-L,L-S)HeattransferUseliteraturedataKineticsofF-TReactionF-Treaction:
CO+2H2=“-CH2-”+H2O+170kJYates-SatterfieldKinetics(Cocatalyst)molCO.(kg-cat)-1.s-1mol.(kg-cat)-1.s-1.bar-2bar-1a*:m6.mol-1.(kg-cat)-1.s-1b*:m3.mol-1I.C.YatesandC.N.Satterfield,EnergyFuels,5(1991)168-173G-L-SSlurryReactorw/HeatExchangeG-L-SSlurryReactor:FlowRegimeG-L-SSlurryReactor:GasHold-upt=0Gashold-upGashold-upfromlargebubblesGashold-upfromsmallbubblesG-L-SSlurryReactor:GasHold-upModelforSlurryReactorPlugflowforlargebubblesWell-mixedforsmallbubbles(densephase)andslurryCatalysteffectivenessfactor=1(smallparticlesizeforslurryreactor,~50mm)Liquidtosolid(catalystparticles)negligibleincomparingwithgastoliquidmasstransferIsothermalconditionswithinslurryandcatalystparticlesUniformslurryG-L-SSlurryReactorFlowModelModelforSlurryReactorLargeBubbles(plugflow)SmallBubbles(CSTR)ModelforSlurryReactorLiquidphase(CSTR)ModelParametersSl
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《有趣的条纹》中班综合教案
- 仓库商品售卖合同范本
- 印章模板采购合同范本
- 《因数与倍数》教学反思
- 供货瓷砖合同范本
- 双人合资合同范本
- 台式计算机供货合同范例
- 个人汽车销售合同范本
- 单位职工解除劳动合同范本
- 企业常见诉讼合同范本
- 上海市建设工程施工图设计文件勘察设计质量疑难问题汇编(2024 版)
- 2024年3、6、9月青少年软件编程Python等级考试一级真题(全3套 含答案)
- 供配电10kv变配电所毕业设计
- 风电场110kV升压站日常巡检路线示意图
- 桩基计算表格大全(自动版)
- 《材料工程基础》教学大纲
- 国内外材料牌号对照
- 建设工程施工合同培训PPT(49页)
- LY∕T 2780-2016 松疱锈病菌检疫技术规程
- 航空服务形体训练课程标准
- 项目部安全管理组织机构网络图GDAQ20102
评论
0/150
提交评论