




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五章刚体的转动
rotationofarigidbody3/14/20231§5-1刚体的平动、转动和定轴转动
1.刚体rigidbody
刚体是一种特殊的质点系统,无论它在多大外力作用下,系统内任意两质点间的距离始终保持不变。2、刚体的平动:translationofarigidbody当刚体运动时,如果刚体内任何一条给定的直线,在运动中始终保持它的方向不变,这种运动叫平动。3/14/20232郑建洲刚体的平动过程bca平动和转动bcab刚体的平动过程平动和转动bca刚体的平动过程平动和转动bca刚体的平动过程平动和转动bca刚体的平动过程平动和转动bca刚体的平动过程平动和转动bca刚体的平动过程平动和转动3.刚体的定轴转动rotationofarigidbodyaroundafixaxis
定轴转动:定轴转动刚体上各点都绕同一转轴作不同半径的圆周运动,且在相同时间内转过相同的角度。特点:角位移,角速度和角加速度均相同;质点在垂直转轴的平面内运动,且作圆周运动。刚体的定轴转动角位移角速度角加速度定轴转动刚体运动的角量描述:3/14/202314郑建洲4.角速度矢量
angularvelocityvector角速度角速度的方向:与刚体转动方向呈右手螺旋关系。角速度矢量在定轴转动中,角速度的方向沿转轴方向。3/14/202315郑建洲(1)滑轮的角加速度。(2)开始上升后,5秒末滑轮的角速度(3)在这5秒内滑轮转过的圈数。(4)开始上升后,1秒末滑轮边缘上一点的加速度(不打滑)。解:(1)轮缘上一点的切向加速度与物体的加速度相等ar例题5-1:一条缆索绕过一定滑论拉动一升降机,滑论半径为0.5m,如果升降机从静止开始以a=0.4m/s2匀加速上升,求:3/14/202317郑建洲(2)(3)(4)ar合加速度的方向与轮缘切线方向夹角已知at=a=0.4m/s23/14/202318郑建洲*例题5-2一飞轮转速n=1500r/min,受到制动后均匀地减速,经t=50s后静止。(1)求角加速度a和飞轮从制动开始到静止所转过的转数N;(2)求制动开始后t=25s时飞轮的加速度;(3)设飞轮的半径r=1m,求在
t=25s时边缘上一点的速度和加速度。角速度0vanatarO解
(1)设初角度为0方向如图所示,3/14/202319郑建洲角速度(2)t=25s时飞轮的角速度为3/14/202321郑建洲(3)t=25s时飞轮边缘上一点P的速度。的方向与0相同;的方向垂直于和构成的平面,如图所示相应的切向加速度和向心加速度分别为角速度由3/14/202322郑建洲边缘上该点的加速度其中
的方向与的方向相反,的方向指向轴心,的大小为
的方向几乎和
相同。角速度3/14/202323郑建洲§5-2转动中的功和能
Workandenergyinthe
rotation
1.力矩的功workdonebytorque力矩的功:当刚体在外力矩作用下绕定轴转动而发生角位移时,就称力矩对刚体做功。力对P点作功:0‘03/14/202325郑建洲因力矩作功:对于刚体定轴转动情形,因质点间无相对位移,任何一对内力作功为零。力矩的功0‘03/14/202326郑建洲2).转动惯量:rotationalinertia(momentofinertia)如果刚体是连续分布的质点系转动惯量的物理意义平动:质点平动动能动量刚体的转动动能转动:角动量可见,转动惯量J是转动中惯性大小的量度3/14/202329郑建洲说明:A、转动动能定理也与质点动力学中讲的动能定理相同,只是动能的表示形式不同而己,B、对刚体,内力的功总和在任何过程中都为零。3、定轴转动的动能定律rotationalkineticenergytheorem把质点系的动能定理应用到定轴转动的刚体,由于刚体内各个质元间相互不作功,Ainr=0,而Aext=M·dθ.则刚体定轴转动的动能定理:总外力矩对刚体所做的功等于刚体转动动能的增量。3/14/202330郑建洲4、刚体的重力势能:xyzoC3/14/202331郑建洲—质元的质量—质元到转轴的距离转动惯量的计算
刚体的质量可认为是连续分布的,所以上式可写成积分形式§5.3转动惯量的计算Calculationofmomentofinertia
(Calculationofrotationalinertia)按转动惯量的定义有3/14/202332郑建洲转动惯量是转动中惯性大小的量度。质量是平动中惯性大小的量度。转动惯量的计算区别:平动:平动动能
线动量转动:转动动能角动量3/14/202333郑建洲例题5.4P146,均匀圆环:dmCR3/14/202334郑建洲转动惯量的计算例题5.5求圆盘对于通过中心并与盘面垂直的转轴的转动惯量。设圆盘的半径为R,质量为m,密度均匀。rRdr解设圆盘的质量面密度为,在圆盘上取一半径为r、宽度为dr的圆环(如图),环的面积为2rdr,环的质量dm=2rdr。可得3/14/202335郑建洲例5.5:计算质量为m,半径为R,厚为l的均匀圆盘的转动惯量.轴与盘面垂直并通过盘心。l解:圆盘可以认为由许多圆环组成。实心圆柱对轴的转动惯量R03/14/202336郑建洲例题5.6求质量为m、长为l的均匀细棒对下面三种转轴的转动惯量:(1)转轴通过棒的中心并和棒垂直;(2)转轴通过棒的一端并和棒垂直;*(3)转轴通过棒上距中心为h的一点并和棒垂直。llOxdxlOxdxAlxdxAABh3/14/202337郑建洲llOxdxA解如图所示,在棒上离轴x处,取一长度元dx,如棒的质量线密度为,这长度元的质量为dm=dx。
(1)当转轴通过中心并和棒垂直时,我们有转动惯量的计算3/14/202338郑建洲因=m/l,代入得转动惯量的计算(2)当转轴通过棒的一端A并和棒垂直时,我们有lxdxA3/14/202339郑建洲转动惯量的计算(3)当转轴通过棒上距中心为h的B点并和棒垂直时,我们有这个例题表明,同一刚体对不同位置的转轴,转动惯量并不相同。lOxdxABh3/14/202340郑建洲哪种握法转动惯量大?3/14/202341郑建洲转动惯量与质量分布有关转动惯量与材料性质有关平行轴定理:刚体对任一轴的转动惯量J,等于对过中心的平行轴的转动惯量、与二轴间的垂直距离d的平方和刚体质量的乘积之和。证明略,见例题5.6(3)3/14/202342郑建洲定轴(相当于)刚体所受到的对于给定轴的总外力矩等于刚体对该轴的角动量的时间变化率由转动的动能定律微分形式:§5.4刚体转动定律lawofrotationofarigidbody两边除以dt:3/14/202343郑建洲ammmRMh例题5.8.已知:M、R、m,绳质量不计,求:物体由静止开始下落h高度时的速度和滑轮的角速度。T1T2mgT1=T2=T
0+)3/14/202344郑建洲m1Rm2*例5.9.物体m1>m2,滑轮(R,m)。阻力矩Mf,绳子质量忽略,不伸长、不打滑。求重物的加速度及绳中张力解:m1gT1T2m2ga1a2T2T1Mf3/14/202345郑建洲1.不计轴上摩擦Mf=03/14/202346郑建洲3.不计轴上摩擦、不计滑轮质量(Mf=0,m=0)2.不计滑轮质量m=03/14/202347郑建洲解:外力:重力、轴的作用力重力势能的减少1)、例5.9:一匀质细杆(l,m)绕光滑水平轴在竖直面内转动,初始时在水平位置,静止释放,求:1)、竖直位置时重力所作的功;2)、下落θ角时的角加速度、角速度;*3)、竖直位置时轴端所受的力。mgθ2)、由转动定律:3/14/202348郑建洲l2l2lll2l2由转动定律:细棒在竖直位置时,端点A和中心点C的速度分别为3/14/202349郑建洲*3>、转动mgNC质心运动mgllllθ3/14/202350郑建洲质点Δmi对O点的角动量为:因vi垂直于Ri,,所以ΔLi的大小为刚体对O点的角动量,等于各质点角动量的矢量和。L并不和OZ方向一致。感兴趣的OZ的分量Lz,叫做刚体绕定轴的角动量,即转动惯量J一、刚体的角动量angularmomentumofarigidbody§5.5刚体定轴转动的角动量守恒lawofconservationofangularmomentumofarotationalrigidbodyaroundafixaxis3/14/202351郑建洲二、定轴转动刚体的角动量定理
angularmomentumtheoremofarotationalrigidbodyaroundafixaxis
转动物体所受合外力矩的冲量矩等于在这段时间内转动物体角动量的增量------角动量定理。所以由转动定律3/14/202352郑建洲
当物体所受合外力矩等于零时,物体的角动量保持不变。-------角动量守恒定律若则由角动量定理三、定轴转动刚体的角动量守恒定律lawofconservationofangularmomentumofarotationalrigidbodyaroundafixaxis角动量守恒定律:3/14/202353郑建洲讨论:a.对于绕固定转轴转动的刚体,因J保持不变,当合外力矩为零时,其角速度恒定。J=恒量3/14/202354郑建洲b.若系统由若干个刚体构成,当合外力矩为零时,系统的角动量依然守恒。J大→
小,J小→大。c.若系统内既有平动也有转动现象发生,若对某一定轴的合外力矩为零,则系统对该轴的角动量守恒。定轴转动刚体的角动量守恒定律3/14/202355郑建洲LABABCC常平架上的回转仪应用事例:定轴转动刚体的角动量守恒定律精确制导3/14/202356郑建洲应用事例:定轴转动刚体的角动量守恒定律直升飞机3/14/202357郑建洲直线运动与定轴转动规律对照质点的直线运动刚体的定轴转动定轴转动刚体的角动量守恒定律3/14/202358郑建洲例5.10一长为l、质量为m的匀质细杆,可绕光滑轴O在铅直面内摆动。当杆静止时,一颗质量为m0的子弹水平射入与轴相距为a处的杆内,并留在杆中,使杆能偏转到q=300,求子弹的初速v0。解:分两个阶段进行考虑其中(1)子弹射入细杆,使细杆获得初速度。因这一过程进行得很快,细杆发生偏转极小,可认为杆仍处于竖直状态。子弹和细杆组成待分析的系统,无外力矩,满足角动量守恒条件。子弹射入细杆前、后的一瞬间,系统角动量分别为定轴转动刚体的角动量守恒定律3/14/202359郑建洲(2)子弹随杆一起绕轴O转动。以子弹、细杆及地球构成一系统,只有保守内力作功,机械能守恒。选取细杆处于竖直位置时子弹的位置为重力势能零点,系统在始末状态的机械能为:由角动量守恒,得:(1)势能零点定轴转动刚体的角动量守恒定律3/14/202360郑建洲由机械能守恒,E=E0,代入q=300,得:将上式与联立,并代入J
值,得定轴转动刚体的角动量守恒定律3/14/202361郑建洲例5.11:圆盘(R,M),人(m)开始静止,人走一周,求盘相对地转动的角度解:系统对转轴角动量守恒人—,盘—3/14/202362郑建洲例题5-12*图中的宇宙飞船对其中心轴的转动惯量为J=2103kgm2,它以=0.2rad/s的角速度绕中心轴旋转。宇航员用两个切向的控制喷管使飞船停止旋转。每个喷管的位置与轴线距离都是r=1.5m。两喷管的喷气流量恒定,共是=2kg/s。废气的喷射速率(相对于飞船周边)u=50m/s,并且恒定。问喷管应喷射多长时间才能使飞船停止旋转。rdm/2dm/2u-uL0Lg解把飞船和排出的废气看作一个系统,废气质量为m。可以认为废气质量远小于飞船的质量,定轴转动刚体的角动量守恒定律3/14/202363郑建洲所以原来系统对于飞船中心轴的角动量近似地等于飞船自身的角动量,即在喷气过程中,以dm表示dt时间内喷出的气体,这些气体对中心轴的角动量为dmr(u+v),方向与飞船的角动量相同。因u=50m/s远大于飞船的速率v(=r),所以此角动量近似地等于dm
ru。在整个喷气过程中喷出废气的总的角动量Lg应为定轴转动刚体的角动量守恒定律3/14/202364郑建洲当宇宙飞船停止旋转时,其角动量为零。系统这时的总角动量L1就是全部排出的废气的总角动量,即为在整个喷射过程中,系统所受的对于飞船中心轴的外力矩为零,所以系统对于此轴的角动量守恒,即L0=L1,由此得即定轴转动刚体的角动量守恒定律3/14/202365郑建洲于是所需的时间为定轴转动刚体的角动量守恒定律3/14/202366郑建洲例题5-13*一匀质细棒长为l,质量为m,可绕通过其端点O的水平轴转动,如图所示。当棒从水平位置自由释放后,它在竖直位置上与放在地面上的物体相撞。该物体的质量也为m,它与地面的摩擦系数为。相撞后物体沿地面滑行一距离s而停止。求相撞后棒的质心C离地面的最大高度h,并说明棒在碰撞后将向左摆或向右摆的条件。解:这个问题可分为三个阶段进行分析。第一阶段是棒自由摆落的过程。这时除重力外,其余内力与外力都不作功,所以机械能守恒。我们把棒在竖直位置时质心所在处取为势能CO定轴转动刚体的角动量守恒定律3/14/202367郑建洲零点,用表示棒这时的角速度,则(1)第二阶段是碰撞过程。因碰撞时间极短,自由的冲力极大,物体虽然受到地面的摩擦力,但可以忽略。这样,棒与物体相撞时,它们组成的系统所受的对转轴O的外力矩为零,所以,这个系统的对O轴的角动量守恒。我们用v表示物体碰撞后的速度,则(2)式中棒在碰撞后的角速度,它可正可负。取正值,表示碰后棒向左摆;反之,表示向右摆。定轴转动刚体的角动量守恒定律3/14/202368郑建洲第三阶段是物体在碰撞后的滑行过程。物体作匀减速直线运动,加速度由牛顿第二定律求得为(3)由匀减速直线运动的公式得(4)亦即由式(1)、(2)与(4)联合求解,即得(5)定轴转动刚体的角动量守恒定律3/14/202369郑建洲亦即l>6s;当取负值,则棒向右摆,其条件为亦即l<6s棒的质心C上升的最大高度,与第一阶段情况相似,也可由机械能守恒定律求得:把式(5)代入上式,所求结果为当取正值,则棒向左摆,其条件为(6)定轴转动刚体的角动量守恒定律3/14/202370郑建洲例题4-14工程上,两飞轮常用摩擦啮合器使它们以相同的转速一起转动。如图所示,A和B两飞轮的轴杆在同一中心线上,A轮的转动惯量为JA=10kgm2,B的转动惯量为JB=20kgm2。开始时A轮的转速为600r/min,B轮静止。C为摩擦啮合器。求两轮啮合后的转速;在啮合过程中,两轮的机械能有何变化?AACBACB定轴转动刚体的角动量守恒定律3/14/202371郑建洲解以飞轮A、B和啮合器C作为一系统来考虑
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农村医疗卫生服务与管理
- 未来5G通信行业发展趋势
- 1 古诗三首 稚子弄冰 教学课件
- 爱护鼻子健康课件
- 我爱问妈妈课件
- 一级建筑师考试真题解析2024
- 租赁秸秆地合同协议
- 土石工程劳务合同协议
- 理乱账合同协议
- 电脑打包出售合同协议
- 医院培训课件:《产前准备-为顺产做准备》
- 《管理学原理》(课件)
- 长城汽车2025人才测评答案
- 幼儿园法制教育讲座
- 河道的管理和防护课件
- 《中华人民共和国产品质量法》知识培训
- 技能人才评价命题技术规程
- 中职不等式的试题及答案
- 深信服aES产品技术白皮书-V1.5
- 浙江省金华义乌市稠州中学2024-2025学年九年级下学期3月独立作业英语试卷(原卷版+解析版)
- Unit+2+Expressing+yourself+PartB(课件)【知识精研】人教PEP版(2024)英语三年级下册
评论
0/150
提交评论