化工传递第一章_第1页
化工传递第一章_第2页
化工传递第一章_第3页
化工传递第一章_第4页
化工传递第一章_第5页
已阅读5页,还剩59页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

化工传递第一章第一页,共六十四页,2022年,8月28日第一章

传递过程概论第一节

平衡过程和传递过程平衡状态:物系内具有强度性质的物理量如温度、组分浓度等不存在梯度。

实际上,大量物理、化学现象同时存在正反两个方向的变化。如:固体的溶解和析出,升华与凝华、可逆化学反应。第二页,共六十四页,2022年,8月28日传递过程:物理量向平衡状态转移的过程。物理量:c,T,v…传递的物理量:质量、能量、动量和电量等质量传递过程:当体系中的物质存在化学势差异时,则发生由高化学势区向低化学势区域的质量传递。化学势的差异可以由浓度、温度、压力或电场力所引起。最常见的是浓度差引起的质量传递过程。此时混合物中的某个组分由高浓度向低浓度区扩散传递。扩散--物质传递第三页,共六十四页,2022年,8月28日能量传递过程:

物系中各部分存在温度差,热量由高温度区向低温度区的转移。动量传递过程:1物体的质量与速度的乘积被定义为动量,速度可认为是单位质量物体的动量。因此,同一物体,速率不同,其动量也不同。在流体中,若两个相邻的流体层的速度不同,则将发生由高速层向低速层的动量传递。第四页,共六十四页,2022年,8月28日传递过程的速率可以用通式表示如下:

本课程主要讨论动量、热量与质量传递过程的速率。第五页,共六十四页,2022年,8月28日第一章传递过程概论第二节流体流动导论一、静止流体的特性(一)流体的密度(ρ)均质流体:

非均质流体:

流体:气体和液体的统称图1-1均质水溶液图1-2非均质溶液密度:ρ:点密度dM:微元质量dV:微元体积方法:取一微元,设微元质量为dM,体积为dV第六页,共六十四页,2022年,8月28日(二)不可压缩流体与可压缩流体

不可压缩流体:密度不随空间位置和时间变化的流体;

通常液体可视为不可压缩流体

可压缩流体:密度随空间位置或时间变化的流体;

气体为可压缩流体;但如气体等温流动且压力改变不大时,可近似为不可压缩流体。流体的比体积(质量体积υ):[m3/kg]重要第七页,共六十四页,2022年,8月28日(三)流体的压力流体表面均匀受力p:点压力,dP:垂直作用在微元体表面的力,dA:微元体表面积压力单位及换算压力表示方法图1-3均匀受力图压力P图1-4非均匀受力图

流体表面非均匀受力压力P1atm=1.013×105Pa=1.013bar=1.033kgf·cm-2=7.60×102mmHg绝对压力和相对压力(表压力和真空度)表压力=绝对压力-大气压力真空度=大气压力-绝对压力e.g,p=2atm绝对压力为2标准大气压p=3x105N/m2(表压)p=500mmHg(真空度)第八页,共六十四页,2022年,8月28日(四)流体平衡微分方程平衡状态(物理意义):流体微元受力分析:质量力和表面力

质量力

(体积力):作用在流体每一个质点上的外力,如重力,静电力,电磁力等

表面力

:作用在流体微元表面,是流体微元的表面与其相邻流体作用所产生(Fs)

静止状态:表面力表现为静压力

运动状态:表面力除压力外,还有粘性力

流体平衡微分方程(欧拉平衡微分方程)

流体平衡条件:FB+Fs=0第九页,共六十四页,2022年,8月28日流体平衡微分方程(欧拉平衡微分方程)的推导流体平衡条件:x方向平衡条件:FB+Fs=0

x方向作用力:质量力(dFBx):表面力(dFsx

静压力产生):第十页,共六十四页,2022年,8月28日x方向微分平衡方程:y方向微分平衡方程:z方向微分平衡方程:

静止流体平衡微分方程(欧拉平衡微分方程)重要写成向量形式:表示静压力梯度等于单位体积流体的质量力。第十一页,共六十四页,2022年,8月28日(五)流体静压力学方程欧拉平衡微分方程质量力:X=0,Y=0,Z=-g流体静力学方程积分得:对于一定密度的液体,压力差与深度h成正比,故液柱高度h可用来表示压力差的大小(mmHg,mH2O)第十二页,共六十四页,2022年,8月28日二、流体流动的基本概念(一)流速与流率流速:流体流动的速度,表示为流速不均匀分布情况下,点流速(在dθ时间内流体流过距离ds)流率:单位时间内流体通过流动截面的量[m/s]

以流体的体积计量称为体积流率(流量,Vs)m3/s

以质量计量称为质量流率(w),kg/s计算:在流动截面上任取一微分面积dA,其点流速为ux,则通过该微元面积的体积流率dVs?通过整个流动截面积A的体积流率Vs?求解:1.体积流率定义式:2.体积流率积分:3.质量流率(w):第十三页,共六十四页,2022年,8月28日主体平均流速(ub):截面上各点流速的平均值质量流速(G):单位时间内流体通过单位流动截面积的质量(用于气体)[kg/(m2s)](二)稳态流动和不稳态流动

稳态流动:当流体流过任一截面时,流速、流率和其他有关的物理量不随时间而变化,称为稳态流动或定常流动;数学特征:e.g与时间θ无关不稳态流动:流体流动时,任一截面处的有关物理量中只要有一个随时间而变化,称为不稳态流动或不定常流动;第十四页,共六十四页,2022年,8月28日(三)粘性定律和粘度1.牛顿粘性定律负号“-”剪应力,单位截面积上的表面力,N/m2;产生:相邻两层流体之间由于粘性作用而产生,粘性力,表面力的一种;动力粘度(简称粘度),流体的一种物性参数,试验测定,查物化手册;ux在y轴方向上的速度梯度;表示当y增加时,ux减少,速度梯度

为负值。当其为正值“+”时,可将负号“-”去掉。第十五页,共六十四页,2022年,8月28日物理意义:单位速度梯度时,作用在两层流体之间的剪应力;单位:SI单位和物理单位2.动力粘度(μ)SI单位制:物理单位制:特性:是温度、压力的函数;

压力对液体粘度影响可忽略,气体的粘度在压力较低时(<1000kPa)影响较小,压力大时,随压力升高而增大。

气体的粘度随温度的升高而增大;液体随温度的升高而减少;1P=100cPSI制单位:m2/s,在物理单位制中单位:cm2/s,称为斯托克斯,以St表示第十六页,共六十四页,2022年,8月28日(五)粘性流体和理想流体(四)牛顿型流体和非牛顿型流体牛顿型流体:遵循牛顿粘性定律的流体;非牛顿型流体:不遵循牛顿粘性定律的流体;

所有气体和大多数低分子量的液体,如水、空气等某些高分子溶液、油漆、血液等粘性流体:具有粘性的流体,也叫实际流体;理想流体:完全没有粘性的流体,即μ=0

的流体,自然界不存在;简化问题,对于粘度较小的流体,如水和空气第十七页,共六十四页,2022年,8月28日(六)流动形态与雷诺数(Reynoldsnumber)1.雷诺试验层流(laminarflow):流速较小时,流体成直线状平稳流动。表明流体中各质点沿着彼此平行的直线而运动,与侧旁的流体无任何宏观混合。湍流(紊流turbulentflow):流速较大时,流体中各质点除了沿管路向前运动之外,各质点还作不规则的脉动,且彼此之间相互碰撞与混合。雷诺实验过渡流态:随着水流速的逐渐提高,当达到某一数值时,细状线的有色液体开始出现不规则的波浪型。图b第十八页,共六十四页,2022年,8月28日2.雷诺数(Re)

u和d称为流体流动的特征速度和特征尺寸物理意义:作用在流体上的惯性力和粘性力的比值

Re<2000,总是层流;

Re>10000,一般都为湍流;

2000<Re<10000,过渡状态。若受外界条件影响,如管道直径或方向的改变、外来的轻微振动都易促使过渡状态下的层流变为湍流重要当量直径圆截面d矩形截面环形截面d2-d1第十九页,共六十四页,2022年,8月28日(七)动量传递现象假定: (1)两层分子交换数相等,有N个分子参与交换; (2)N个分子的总质量为M;则,从流层2转入1中的x方向动量:从流层1转入2中的x方向动量:流层2在x方向净输出动量给流层1:动量由高速区向低速区传递第二十页,共六十四页,2022年,8月28日动量通量:单位时间通过单位垂直于y方向面积上传递的动量[kg·(m/s)/(m2·s)]

层流流体在流向上的动量,沿其垂直方向由高速流层向低速流层传递,导致流层间剪应力τ(内摩擦力)的产生。本质上是分子微观运动的结果,属于分子传递过程。剪应力[N/m2=kg·(m/s2)/(m2)=kg·(m/s)/(m2·s)]

湍流流体在流向上的动量,分子传递+涡流传递。第二十一页,共六十四页,2022年,8月28日第三节

动量、热量和质量传递的类似性一、分子传递的基本定律分子运动引起的动量传递——牛顿黏性定律分子运动引起的热量传递(热传导)——傅里叶定律分子运动引起的质量传递(分子扩散)——费克定律第二十二页,共六十四页,2022年,8月28日牛顿粘性定律

-比例系数,称为流体的粘度;

-作用在与y方向相垂直的单位面积上的力;

-速度梯度。描述分子动量传递的基本定律一、分子传递的基本定律第二十三页,共六十四页,2022年,8月28日傅里叶定律描述分子导热的基本定律

-介质的导热系数;

-温度梯度。

-导热通量;一、分子传递的基本定律t1>t2>t3热流方向第二十四页,共六十四页,2022年,8月28日费克定律描述2组元混合物体系中A存在浓度梯度时的分子扩散:

jA

-组分A的扩散质量通量;

DAB

-组分A在组分B中的扩散系数;

-组分A的质量浓度梯度。一、分子传递的基本定律第二十五页,共六十四页,2022年,8月28日分子传递的基本定律速度梯度动量通量

牛顿粘性定律温度梯度热量通量

傅里叶定律粘度导热系数浓度梯度质量通量

费克定律组分A在组分B中的扩散系数推动力通量定律系数类似性:1、各过程所传递的物理量都与其相应的强度因素的梯度成正比,并且都沿着负梯度(降度)的方向传递;2、各式中的系数只是状态函数,与传递的物理量及梯度无关。第二十六页,共六十四页,2022年,8月28日二、动量通量、热量通量与质量通量的普遍表达式动量通量-动量扩散系数-动量浓度梯度(动量通量)=—(动量扩散系数)x(动量浓度梯度)假设为不可压缩流体,密度为常数作量纲分析-动量通量第二十七页,共六十四页,2022年,8月28日热量通量-热量通量-热量扩散系数-热量浓度梯度(热量通量)=—(热量扩散系数)x(热量浓度梯度)二、动量通量、热量通量与质量通量的普遍表达式第二十八页,共六十四页,2022年,8月28日质量通量(质量通量)=—(质量扩散系数)x(质量浓度梯度)-组分A的质量通量-组分A质量扩散系数-组分A质量浓度梯度二、动量通量、热量通量与质量通量的普遍表达式第二十九页,共六十四页,2022年,8月28日通量=-扩散系数×浓度梯度质量通量=-质量扩散系数×质量浓度梯度热量通量=-热量扩散系数×热量浓度梯度动量通量=-动量扩散系数×动量浓度梯度扩散系数,量纲相同,m2/s“-”表示通量的方向与梯度的方向相反。分子传递的类似性现象方程第三十页,共六十四页,2022年,8月28日例:已知一圆柱形固体由外表面向中心导热,试写出沿径向的导热现象方程求解:zroq现象方程:

关于传递方向和梯度方向:沿坐标轴(y轴)方向为传递的正方向,即当y值增时,速度、温度和组分A浓度的值都降低。依据梯度定义,其相应量增加的方向为梯度的正方向,故此处坐标轴的相反方向(-y)即为梯度的正方向,亦即传递方向与梯度方向相反。现象方程中有负号,表示传递方向与坐标轴方向相同,而梯度方向与坐标轴方向相反。现象方程中有正号时,表示传递方向与坐标轴方向相反,而梯度方向与坐标轴方向相同。第三十一页,共六十四页,2022年,8月28日三、涡流传递的类似性

动量通量

热量通量

质量通量涡流传递通量=-涡流扩散系数×涡流浓度梯度涡流传递>>分子传递第三十二页,共六十四页,2022年,8月28日动量、热量和质量传递的通量表达式仅有分子运动的传递过程以涡流运动为主的传递过程兼有分子运动和涡流运动的传递过程动量通量热量通量质量通量第三十三页,共六十四页,2022年,8月28日一、守恒定律与衡算方法

对于任一过程或物理现象,进行动量、热量与质量传递研究,都离不开自然界普遍适用的守恒定律:

动量守恒定律—牛顿第二定律、热量守恒定律—热力学第一定律以及质量守恒定律。

对所选过程或物理现象,划定一个确定的衡算范围,将动量、热量与质量守恒定律应用于该范围,进行物理量的衡算。第四节

传递过程的衡算方法第三十四页,共六十四页,2022年,8月28日一、守恒定律与衡算方法对设备尺度范围进行的衡算成为总衡算或宏观衡算。对流体微团尺度范围进行的衡算为微分衡算或微观衡算。分子尺度第三十五页,共六十四页,2022年,8月28日(1)宏观水平上描述以图所示的虚线作衡算范围进行总衡算:质量衡算输入的质量流率-输出的质量流率

=累积的质量流率能量衡算输入的热量速率-流出的热量速率+加入的热速率-系统对外作功速率=累积的热速率一、守恒定律与衡算方法动量衡算输入的动量速率-流出的动量速率+作用在体系上的合外力=累积的动量速率第三十六页,共六十四页,2022年,8月28日(2)微观水平上描述

微观衡算(微分衡算)—在研究对象内部选择一个有代表性的微分点,将守恒定律应用于该点。通过衡算,得出一组描述动量、热量与质量变化的微分方程,成为变化方程(Equationofchange)。然后通过积分,获得系统内部的速度、温度及浓度的变化规律。这些变化规律对于传递速率的求解必不可少。一、守恒定律与衡算方法第三十七页,共六十四页,2022年,8月28日(3)分子水平上描述

根据分子结构、分子间的相互作用,作分子水平上的考察,对于动量、热量与质量传递的理解是有帮助的。如各种传递系数(黏度、扩散性、导热性等)可以应用流体的分子运动理论求解。一、守恒定律与衡算方法第三十八页,共六十四页,2022年,8月28日1.总质量衡算式图为任意空间范围的控制体,其总体积为V,控制面的总面积为A,设流体密度为ρ,流速为u(向量),则质量通量为ρu(亦称质量流速G)。

二、

通用的总衡算式(1)当速度与微元面积垂直,则通过此面积的质量通量为(2)当速度与微元面积不垂直,而是与其法线呈夹角α,质量通量为

第三十九页,共六十四页,2022年,8月28日流过整个控制面的质量流率:A代表一个封闭的面

上式表示通过控制面外流的净质量流率,即若流体速度与控制面法线夹角α<90º,cosα>0,输出若流体速度与控制面法线夹角α>90º,cosα<0,输入根据面积积分的值可知:(1)为正值时,有质量的净输出(2)为负值时,有质量的净输入(3)为零时,无质量的输入和输出第四十页,共六十四页,2022年,8月28日整个控制体的瞬时质量为:其质量累积速率为:根据质量守恒定律得:上式即应用于任意控制体的总质量衡算方程在控制体V内任取一个微元体dV,其流体质量为ρdV,第四十一页,共六十四页,2022年,8月28日2.总能量衡算式

同样的,对于一个任意形状的控制面A和控制体V,热力学第一定律可写成:

-单位质量(1Kg)流体所吸收的热[J/Kg]

-单位质量流体(1Kg)对环境所作的功[J/Kg]E-单位质量(1Kg)流体的各种能量之和功[J/Kg][J/Kg]第四十二页,共六十四页,2022年,8月28日总能量衡算的另一种形式为:对于控制体,参照质量衡算有:式中:机械功:流体功第四十三页,共六十四页,2022年,8月28日3.总动量衡算依牛顿第二定律导出,通用的总动量衡算方程牛顿第二定律表述为:系统的动量变化速率等于作用在系统上的合外力。其中F、a和u均为向量对于控制体,其总动量衡算应遵循:第四十四页,共六十四页,2022年,8月28日参照质量衡算,通过整个控制面的净动量速率为:u为流体速度,理解为1Kg流体所具有的动量(Kg·m/s)/Kg总动量衡算方程可写成:式中:F为向量,u也为向量。第四十五页,共六十四页,2022年,8月28日总衡算的局限性:

总衡算只能考察系统的流入、流出以及内部的平均变化情况,系统内部物理量如温度、压力、密度、速度等的逐点变化规律无法得知。

总衡算的方法在化工设计计算中常用—物料衡算与热量衡算等。第四十六页,共六十四页,2022年,8月28日二、系统与控制体

根据所考察的对象不同,选用衡算范围的方法有两种:控制体系统第四十七页,共六十四页,2022年,8月28日控制体特点:相对于坐标其体积不变,包围该空间体积的界面称为控制面。流体可以自由进出控制体,控制面上可有力的作用和能量交换。其特点是体积、位置固定,输入和输出控制体的物理量随时间改变。—具有确定不变的空间区域(体积)。

在传递过程中,控制体指流体在流动过程中所通过的固定不变的空间区域。二、系统与控制体第四十八页,共六十四页,2022年,8月28日系统特点:系统与环境之间无质量交换,但在界面上有力的作用及能量的交换。系统的边界随着环境流体一起运动,因此其体积、位置和形状是随时间变化的。—包含确定不变物质(流体质点)的集合,系统以外的一切称为环境。

在传递过程中,系统指由确定流体质点所组成的流体元。二、系统与控制体第四十九页,共六十四页,2022年,8月28日三、拉格朗日观点和欧拉观点

根据研究所选定的衡算范围是控制体还是系统,有两种相应的研究方法:拉格朗日观点(Lagrangeviewpoint)欧拉观点(Eulerviewpoint)第五十页,共六十四页,2022年,8月28日欧拉观点

着眼于流场中的空间点,以流场中的固定空间点(控制体)为考察对象,研究流体质点通过空间固定点时的运动参数随时间的变化规律。然后综合所有空间点的运动参数随时间的变化,得到整个流场的运动规律。三、拉格朗日观点和欧拉观点第五十一页,共六十四页,2022年,8月28日拉格朗日观点

着眼于流场中的运动着的流体质点(系统),跟踪观察每一个流体质点的运动轨迹及其速度、压力等量随时间的变化。然后综合所有流体质点的运动,得到整个流场的运动规律。三、拉格朗日观点和欧拉观点第五十二页,共六十四页,2022年,8月28日原则上讲,两种方法所得结果一致,都可采用。三、拉格朗日观点和欧拉观点第五十三页,共六十四页,2022年,8月28日连续方程:在传递过程中,对单组分流体流动系统或不考虑组分浓度变化的多组分流体流动系统进行微分质量衡算所导出的方程。微分能量衡算方程(简称能量方程):对流体流动系统进行微分能量衡算所导出的方程。运动方程:对流体流动系统进行微分动量衡算所导出的方程。微分质量衡算方程或对流扩散方程:对组分浓度变化的多组分流体流动系统中某一组分进行微分质量衡算所导出的方程。

连续性方程、能量方程、运动方程和对流扩散方程统称为变化方程。

牛顿黏性定律、傅里叶定律和费克定律统称为本构方程。第五十四页,共六十四页,2022年,8月28日

所谓算子是一种数学运算符号缩写的算符。本课程中常用的算子有:(1)哈密尔顿算子▽;(2)拉普拉斯算子△;

(3)偏导数

(4)全导数(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论