专题18 数列的求和问题(教师版含解析)_第1页
专题18 数列的求和问题(教师版含解析)_第2页
专题18 数列的求和问题(教师版含解析)_第3页
专题18 数列的求和问题(教师版含解析)_第4页
专题18 数列的求和问题(教师版含解析)_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题18数列的求和问题1.(2021年浙江卷数学试题)已知数列满足.记数列的前n项和为,则()A. B. C. D.【答案】A【解析】【分析】显然可知,,利用倒数法得到,再放缩可得,由累加法可得,进而由局部放缩可得,然后利用累乘法求得,最后根据裂项相消法即可得到,从而得解.【详解】因为,所以,.由,即根据累加法可得,,当且仅当时取等号,,由累乘法可得,当且仅当时取等号,由裂项求和法得:所以,即.故选:A.【点睛】本题解题关键是通过倒数法先找到的不等关系,再由累加法可求得,由题目条件可知要证小于某数,从而通过局部放缩得到的不等关系,改变不等式的方向得到,最后由裂项相消法求得.2.(2021年全国高考乙卷数学(文)试题)设是首项为1的等比数列,数列满足.已知,,成等差数列.(1)求和的通项公式;(2)记和分别为和的前n项和.证明:.【答案】(1),;(2)证明见解析.【分析】因为是首项为1的等比数列且,,成等差数列,所以,所以,即,解得,所以,所以.(2)证明:由(1)可得,,①,②①②得,所以,所以,所以.3.(2021年全国高考乙卷数学(理)试题)记为数列的前n项和,为数列的前n项积,已知.(1)证明:数列是等差数列;(2)求的通项公式.【答案】(1)证明见解析;(2).【分析】(1)由已知得,且,,取,由得,由于为数列的前n项积,所以,所以,所以,由于所以,即,其中所以数列是以为首项,以为公差等差数列;(2)由(1)可得,数列是以为首项,以为公差的等差数列,,,当n=1时,,当n≥2时,,显然对于n=1不成立,∴.4.(2021年全国高考甲卷数学(文)试题)记为数列的前n项和,已知,且数列是等差数列,证明:是等差数列.【答案】证明见解析.【分析】∵数列是等差数列,设公差为∴,∴,∴当时,当时,,满足,∴的通项公式为,∴∴是等差数列.5.(2021年全国高考甲卷数学(理)试题)已知数列的各项均为正数,记为的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列是等差数列:②数列是等差数列;③.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】答案见解析【分析】选①②作条件证明③:设,则,当时,;当时,;因为也是等差数列,所以,解得;所以,所以.选①③作条件证明②:因为,是等差数列,所以公差,所以,即,因为,所以是等差数列.选②③作条件证明①:设,则,当时,;当时,;因为,所以,解得或;当时,,当时,满足等差数列的定义,此时为等差数列;当时,,不合题意,舍去.综上可知为等差数列.6.(2021年全国新高考Ⅰ卷数学试题)已知数列满足,(1)记,写出,,并求数列的通项公式;(2)求的前20项和.【答案】(1);(2).【分析】(1)由题设可得又,,故,即,即所以为等差数列,故.(2)设的前项和为,则,因为,所以.7.(2021年全国新高考2卷数学试题)记是公差不为0等差数列的前n项和,若.(1)求数列的通项公式;(2)求使成立的n的最小值.【答案】(1);(2)7.【解析】【分析】(1)由题意首先求得的值,然后结合题意求得数列的公差即可确定数列的通项公式;(2)首先求得前n项和的表达式,然后求解二次不等式即可确定n的最小值.【详解】(1)由等差数列的性质可得:,则:,设等差数列的公差为,从而有:,,从而:,由于公差不为零,故:,数列的通项公式为:.(2)由数列的通项公式可得:,则:,则不等式即:,整理可得:,解得:或,又为正整数,故的最小值为.【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.8.(2021年天津卷数学试题)已知是公差为2的等差数列,其前8项和为64.是公比大于0的等比数列,.(I)求和的通项公式;(II)记,(i)证明是等比数列;(ii)证明【答案】(I),;(II)(i)证明见解析;(ii)证明见解析.【解析】【分析】(I)由等差数列求和公式运算可得的通项,由等比数列的通项公式运算可得的通项公式;(II)(i)运算可得,结合等比数列的定义即可得证;(ii)放缩得,进而可得,结合错位相减法即可得证.【详解】(I)因为是公差为2的等差数列,其前8项和为64.所以,所以,所以;设等比数列的公比为,所以,解得(负值舍去),所以;(II)(i)由题意,,所以,所以,且,所以数列是等比数列;(ii)由题意知,,所以,所以,设,则,两式相减得,所以,所以.【点睛】关键点点睛:最后一问考查数列不等式的证明,因为无法直接求解,应先放缩去除根号,再由错位相减法即可得证.9.(2021年浙江卷数学试题)已知数列的前n项和为,,且.(1)求数列的通项;(2)设数列满足,记的前n项和为,若对任意恒成立,求实数的取值范围.【答案】(1);(2).【解析】【分析】(1)由,结合与的关系,分讨论,得到数列为等比数列,即可得出结论;(2)由结合的结论,利用错位相减法求出,对任意恒成立,分类讨论分离参数,转化为与关于的函数的范围关系,即可求解.【详解】(1)当时,,,当时,由①,得②,①②得,又是首项为,公比为的等比数列,;(2)由,得,所以,,两式相减得,所以,由得恒成立,即恒成立,时不等式恒成立;时,,得;时,,得;所以.【点睛】易错点点睛:(1)已知求不要忽略情况;(2)恒成立分离参数时,要注意变量的正负零讨论,如(2)中恒成立,要对讨论,还要注意时,分离参数不等式要变号.10.(2021年北京卷数学试题)定义数列:对实数p,满足:①,;②;③,.(1)对于前4项2,-2,0,1的数列,可以是数列吗?说明理由;(2)若是数列,求的值;(3)是否存在p,使得存在数列,对?若存在,求出所有这样的p;若不存在,说明理由.【答案】(1)不可以是数列;理由见解析;(2);(3)存在;.【解析】【分析】(1)由题意考查的值即可说明数列不是数列;(2)由题意首先确定数列的前4项,然后讨论计算即可确定的值;(3)构造数列,易知数列是的,结合(2)中的结论求解不等式即可确定满足题意的实数的值.【详解】(1)由性质③结合题意可知,矛盾,故前4项的数列,不可能是数列.(2)性质①,由性质③,因此或,或,若,由性质②可知,即或,矛盾;若,由有,矛盾.因此只能是.又因为或,所以或.若,则,不满足,舍去.当,则前四项为:0,0,0,1,下面用纳法证明:当时,经验证命题成立,假设当时命题成立,当时:若,则,利用性质③:,此时可得:;否则,若,取可得:,而由性质②可得:,与矛盾.同理可得:,有;,有;,又因为,有即当时命题成立,证毕.综上可得:,.(3)令,由性质③可知:,由于,因此数列为数列.由(2)可知:若;,,因此,此时,,满足题意.【点睛】本题属于数列中的“新定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论