电磁场与波边值问题的解法_第1页
电磁场与波边值问题的解法_第2页
电磁场与波边值问题的解法_第3页
电磁场与波边值问题的解法_第4页
电磁场与波边值问题的解法_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

关于电磁场与波边值问题的解法第1页,共38页,2023年,2月20日,星期五

3.1边值问题的提法(分类)3.1.1边值问题的分类1狄利克雷问题:给定整个场域边界面S上各点电位的(函数)值2聂曼问题:给定待求位函数在边界面上的法向导数值3混合边值问题:给定边界上的位函数及其法向导数的线性组合

另外,若场域在无限远处,电荷分布在有限区域,则有自然边界条件若边界面是导体,边界条件转变为已知一部分导体表面的电位或另一部分导体表面的电荷量。第2页,共38页,2023年,2月20日,星期五3.1.2泊松方程和拉普拉斯方程1泊松方程(Poisson‘sEquation)在线性、各向同性、均匀的电介质中,称之为静电场的泊松方程,它表示求解区域的电位分布取决于当地的电荷分布。2拉普拉斯方程(Laplace'sEquation)

电荷分布在导体表面的静电场问题,在感兴趣的区域内多数点的体电荷密度等于零,即ρV=0,因而有▽2φ=0称为拉普拉斯方程。第3页,共38页,2023年,2月20日,星期五例1:

已知无限长同轴电缆内、外半径分别为和,如图所示,电缆中填充均匀介质,内外导体间的电位差为,外导体接地。求其间各点的电位和电场强度。解:根据轴对称的特点和无限长的假设,可确定电位函数满足一维拉普拉斯方程,采用圆柱坐标系积分由边界条件则:第4页,共38页,2023年,2月20日,星期五3.2唯一性定理1定理内容在静电场中,每一类边界条件下,泊松方程或拉普拉斯方程的解必定是唯一的,即静电场的唯一性定理。2证明过程利用反证法来证明在第一类边界条件下,拉普拉斯方程的解是唯一的。设在给定边界上的电位时,拉普拉斯方程有φ1和φ2两个解,由于拉普拉斯方程是线性的,两个解的差φ′=φ1-φ2也满足方程第5页,共38页,2023年,2月20日,星期五考虑一个由表面边界S包围的体积V,由格林第一定理令得φ′及其法向导数在边界S上的值为零因为又因为边界条件,得常数=0在闭合曲面S上,φ1和φ2都满足给定的边界条件,即或第6页,共38页,2023年,2月20日,星期五3.1.3静电场边界值问题的间接解法唯一性定理边值问题数值法解析法分离变量法镜像法有限差分法第7页,共38页,2023年,2月20日,星期五3.3镜像法理论依据:惟一性定理是镜像法的理论依据。镜像:暂时忽略边界的存在,在所求区域之外放置一个或多个虚设的等效电荷来代替导体表面上感应电荷的作用,此虚拟的电荷被称为实际电荷的镜像。这种求解方法称为镜像法。原电荷与镜像电荷共同作用在边界上保持边界条件不变。第8页,共38页,2023年,2月20日,星期五

待求场域:上半空间边界:无限大导体平面边界条件:点电荷对无限大接地导体平面的镜像

导体平面导体平面在空间的电位为点电荷q

和镜像电荷-q

所产生的电位叠加,即电位满足边界条件导体平面边界上:第9页,共38页,2023年,2月20日,星期五上半空间的电场强度:电位:第10页,共38页,2023年,2月20日,星期五导体表面感应电荷导体表面上感应电荷总量导体表面上感应电荷对点电荷的作用力第11页,共38页,2023年,2月20日,星期五2线电荷对无限大接地导体平面的镜像

将无限长的线电荷看作无数个点电荷的集合。根据点电荷对无限大接地导体平面的镜像原理,可得到线电荷对应的镜像电荷仍为平行于导体表面的线电荷,其电荷密度为沿轴方向的无限长直线电荷位于无限大接地导体平面的上方zyy其镜像电荷仍是无限长线电荷第12页,共38页,2023年,2月20日,星期五在的上半空间中,电位函数为yz上半空间的电场待求场域中的电位y第13页,共38页,2023年,2月20日,星期五3点电荷对半无限大接地导体角域的镜像

由两个半无限大接地导体平面形成角形边界,当其夹角为,而为整数时,该角域中的点电荷将有个个镜像电荷,该角域中的场可以用镜像法求解。当n=4时:该角域外有3个镜像电荷q1、q2和q3,位置如图所示。其中第14页,共38页,2023年,2月20日,星期五当n=6时:角域外有5个镜像电荷,大小和位置如图所示。所有镜像电荷都正、负交替地分布在同一个圆周上,该圆的圆心位于角域的顶点,半径为点电荷到顶点的距离。n不为整数时,镜像电荷将有无数个,镜像法就不再适用了;当角域夹角为钝角时,镜像法亦不适用。q/3/3q第15页,共38页,2023年,2月20日,星期五4.

点电荷对导体球面的镜像设一点电荷q位于半径a为的接地导体球附近,与球心的距离为d,如图所示。待求场域为r>a区域,边界条件为导体球面上电位为零。设想在待求场域之外有一镜像电荷q′,位置如图所示。根据镜像法原理,q和q′在球面上的电位为零。第16页,共38页,2023年,2月20日,星期五点电荷与接地导体球周围的电场aa第17页,共38页,2023年,2月20日,星期五在球面上任取一点c,则空间任意点的电位:第18页,共38页,2023年,2月20日,星期五导体球不接地:a—a第19页,共38页,2023年,2月20日,星期五导体球不接地:根据电荷守恒定律,导体球上感应电荷代数和应为零,就必须在原有的镜像电荷之外再附加另一镜像电荷

q″=-q′球外任一点电位:

球面上任一点电位:为了保证球面为等位面的条件,镜像电荷q″应位于球心处。第20页,共38页,2023年,2月20日,星期五例3:有一接地导体球壳,内外半径分别为a1和a2,在球壳内外各

有一点电荷q1和q2

,与球心距离分别为d1和d2

,如图所示。

求:球壳外、球壳中和球壳内的电位分布。球壳外:边界为r=a2的导体球面,边界条件为根据球面镜像原理,镜像电荷的位置和大小分别为球壳外区域任一点电位为解:第21页,共38页,2023年,2月20日,星期五球壳内:边界为r=a1的导体球面,边界条件为根据球面镜像原理,镜像电荷的位置和大小分别为球壳内区域任一点电位为球壳中:球壳中为导体区域,导体为等位体,球壳中的电位为零。用镜像法解题时,一定要注意待求区域及其边界条件,对边界以外的情况不予考虑。第22页,共38页,2023年,2月20日,星期五5线电荷对导体圆柱面的镜像待求区域:边界条件:柱面上电位为零设想镜像线电荷位于对称面上,且与圆柱轴线距离为b,则导体柱面外任一点的电位表示为(分别以ρ、ρ’处为坐标系中心)

无限长接地导体圆柱的半径为a,在距离轴线为d(d>a)处有一无限长线电荷与圆柱平行,计算空间各部分的电位。第23页,共38页,2023年,2月20日,星期五对任意θ成立,第24页,共38页,2023年,2月20日,星期五两平行线电荷的电位分布第25页,共38页,2023年,2月20日,星期五四、分离变量法理论基础惟一性定理分离变量法的主要步骤根据给定的边界形状,选择适当的坐标系,正确写出该坐标系下拉普拉斯的表达式,及给定的边界条件。经变量分离将偏微分方程化简为常微分方程,并给出常微分方程的通解,其中含有待定常数。利用给定的边界条件,确定通解中的待定常数,获得满足边界条件的特解。第26页,共38页,2023年,2月20日,星期五直角坐标系中二维拉普拉斯方程分离变量法本征方程的求解(1)当时本征函数本征方程本征值第27页,共38页,2023年,2月20日,星期五(2)当时,设或由本征方程为:则:第28页,共38页,2023年,2月20日,星期五(3)当时,设由本征方程为:或则:第29页,共38页,2023年,2月20日,星期五应用叠加定理,可将三种解叠加组成拉普拉斯方程的通解三种解的特点:第一种解中,X(x)和Y(y)为常数或线性函数,说明它们最多只有一个零点;第二种解中,X(x)为三角函数,有多个零点,Y(y)为双曲函数,最多只有一个零点;第三种解中,X(x)为双曲函数,最多有一个零点,而Y(y)为三角函数,有多个零点。第30页,共38页,2023年,2月20日,星期五解:

选直角坐标系,电位函数满足二维拉普拉斯方程

边界条件:例:一接地金属槽如图所示,其侧壁和底壁电位均为零,顶盖与侧壁绝缘,其电位为U0,求槽内电位分布。第31页,共38页,2023年,2月20日,星期五设,代入式(1)中得:根据边界条件(2)与(3)可知,函数X(x)沿x方向有两个零点,因此X(x)应为三角函数形式,又因为X(0)=0,所以X(x)应选取正弦函数,即由边界条件(3)得:第32页,共38页,2023年,2月20日,星期五对应的Y(y)函数为双曲函数,且Y(0)=0,于是Y(y)的形式为此时,电位可表示为由边界条件(5)知

第33页,共38页,2023年,2月20日,星期五对上式两边同乘以,再对x从0到a进行积分,即第34页,共38页,2023年,2月20日,星期五满足边界条件的特解为:第35页,共38页,2023年,2月

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论