高考理科数学二轮专题复习大题之统计与概率_第1页
高考理科数学二轮专题复习大题之统计与概率_第2页
高考理科数学二轮专题复习大题之统计与概率_第3页
高考理科数学二轮专题复习大题之统计与概率_第4页
高考理科数学二轮专题复习大题之统计与概率_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高三理数二轮大题专题训练II)设配备型车辆,型车辆,运营成本为元,由已知条件得,而作出可行域,得到最优解.所以配备型车5辆,型车12辆可使运营成本最小.17.【答案】(1)设第一次取出的4件产品中恰有3件优质品为事件A,第一次取出的4件产品中全为优质品为事件B,第二次取出的4件产品都是优质品为事件C,第二次取出的1件产品是优质品为事件D,这批产品通过检验为事件E,根据题意有E=(AB)∪(CD),且AB与CD互斥,∴P(E)=P(AB)+P(CD)=P(A)P(B|A)+P(C)P(D|C)=+=(Ⅱ)X的可能取值为400,500,800,并且P(X=400)=1-=,P(X=500)=,P(X=800)==,∴X的分布列为X400500800PEX=400×+500×+800×=506.2518.【答案】解:变量x是在1,2,3,24这24个整数中随机产生的一个数,共有24种可能.当x从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y的值为1,故;当x从2,4,8,10,14,16,20,22这8个数中产生时,输出y的值为2,故;当x从6,12,18,24这4个数中产生时,输出y的值为3,故当n=2100时,甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率如下:输出的值为的频率输出的值为的频率输出的值为的频率甲乙比较频率趋势与概率,可得乙同学所编程序符合算法要求的可能性较大(3)随机变量的可能取值为0,1,2,3.故的分布列为所以19.【答案】20.【答案】(1)(2)21.【解析】:(Ⅰ)抽取产品质量指标值的样本平均数和样本方差分别为…………6分(Ⅱ)(ⅰ)由(Ⅰ)知~,从而………………9分(ⅱ)由(ⅰ)知,一件产品中质量指标值为于区间(187.8,212.2)的概率为0.6826依题意知,所以………12分22.【解析】(1)X的分布列如下表:X80020004000P0.20.50.3(2)23.【解析】用A表示“甲在4局以内(含4局)赢得比赛”,表示“第局甲获胜”,表示“第局乙获胜”,则,,=1,2,3,4,5.(Ⅰ)(Ⅱ)X的可能取值为2,3,4,5.,,.故的分布列为2345.24.【解析】(I)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是05.(Ⅱ)设事件A为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”。则C=,A,B独立。根据投篮统计数据,.所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为.(Ⅲ).25.【解析】(1)解:设至少有一组研发成功的事件为事件且事件为事件的对立事件,则事件为新产品都没有成功,因为甲,乙成功的概率分别为,则,再根据对立事件概率之间的概率公式可得,所以至少一种产品研发成功的概率为.26.(Ⅰ)解:设“选出的3名同学来自互不相同的学院”为事件,则.所以,选出的3名同学来自互不相同学院的概率为.(Ⅱ)解:随机变量的所有可能值为0,1,2,3..所以,随机变量的分布列是0123随机变量的数学期望.27.【解析】(Ⅰ)音乐次数0123得分X-2001020100概率P(Ⅱ)(Ⅲ)28.【解析】(1)(2)X0123P0.0640.2880.4320.21629.(Ⅰ)依题意,,,.由二项分布,在未来4年中,至多有1年的年入流量超过120的概率为:.(Ⅱ)记水电站年总利润为Y(单位:万元)(1)安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y=5000,E(Y)=5000×1=5000.(2)安装2台发电机的情形.依题意,当40<X<80时,一台发电机运行,此时Y=5000-800=4200,因此P(Y=4200)=P(40<X<80)=p1=0.2;当X≥80时,两台发电机运行,此时Y=5000×2=10000,因此P(Y=10000)=P(X≥80)=p2+p3=0.8;由此得Y的分布列如下Y420010000P0.20.8所以E(Y)=4200×0.2+10000×0.8=8840.(3)安装3台发电机的情形.依题意,当40<X<80时,一台发电机运行,此时Y=5000-1600=3400,因此P(Y=15000)=P(X>120)=p3=0.1,由此得Y的分布列如下Y3400920015000P0.20.70.1所以,E(Y)=3400×0.2+9200×0.7+15000×0.1=8620.综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.30.解:(1)设顾客所获的奖励额为X.(i)依题意,得P(X=60)=eq\f(Ceq\o\al(1,1)Ceq\o\al(1,3),Ceq\o\al(2,4))=eq\f(1,2).即顾客所获的奖励额为60元的概率为eq\f(1,2),(ii)依题意,得X的所有可能取值为20,60.P(X=60)=eq\f(1,2),P(X=20)=eq\f(Ceq\o\al(2,3),Ceq\o\al(2,4))=eq\f(1,2),即X的分布列为X2060P0.50.5所以顾客所获的奖励额的期望为E(X)=20×0.5+60×0.5=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X1,则X1的分布列为X12060100Peq\f(1,6)eq\f(2,3)eq\f(1,6)X1的期望为E(X1)=20×eq\f(1,6)+60×eq\f(2,3)+100×eq\f(1,6)=60,X1的方差为D(X1)=(20-60)2×eq\f(1,6)+(60-60)2×eq\f(2,3)+(100-60)2×eq\f(1,6)=eq\f(1600,3).对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X2406080Peq\f(1,6)eq\f(2,3)eq\f(1,6)X2的期望为E(X2)=40×eq\f(1,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论