版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.3环,方差分别为S甲2=0.1.S乙2=0.62,S丙2=0.50,S丁2=0.45,则成绩最稳定的是()A.甲 B.乙 C.丙 D.丁2.分式有意义的条件是()A. B. C. D.3.下列各组数是勾股数的是()A.6,7,8 B.1,,2C.5,4,3 D.0.3,0.4,0.54.已知,下列不等式中错误的是()A. B. C. D.5.如图所示,在平行直角坐标系中,▱OMNP的顶点P坐标是(3,4),顶点M坐标是(4,0)、则顶点N的坐标是()A.N(7,4) B.N(8,4) C.N(7,3) D.N(8,3)6.如图,在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF、EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED。正确的是()A.②③ B.②③④ C.③④ D.①②③④7.如图,四边形是平行四边形,对角线、交于点,是的中点,以下说法错误的是()A. B. C. D.8.如图,以正方形ABCD的顶点A为坐标原点,直线AB为x轴建立直角坐标系,对角线AC与BD相交于点E,P为BC上一点,点P坐标为(a,b),则点P绕点E顺时针旋转90°得到的对应点P的坐标是()A.(a-b,a) B.(b,a) C.(a-b,0) D.(b,0)9.如图,抛物线与直线经过点,且相交于另一点,抛物线与轴交于点,与轴交于另一点,过点的直线交抛物线于点,且轴,连接,当点在线段上移动时(不与、重合),下列结论正确的是()A. B.C. D.四边形的最大面积为1310.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是A. B.C. D.二、填空题(每小题3分,共24分)11.直线与直线平行,则__________.12.因式分解:____________.13.如图,中,,平分,点为的中点,连接,若的周长为24,则的长为______.14.化简b0_______.15.如图所示,△ABC中,CD⊥AB于D,E是AC的中点,若DE=5,则AC的长等于_____.16.一次函数y=2x-4的图像与x轴的交点坐标为_______.17.一次函数(是常数,)的图象经过点,若,则的值是________.18.如图,直线l1∶y=ax与直线l2∶y=kx+b交于点P,则不等式ax>kx+b的解集为_________.三、解答题(共66分)19.(10分)解方程:+x=1.20.(6分)如图,在锐角三角形ABC中,点D、E分别在边AC、AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=BE=4,AE=3,求CD的值.21.(6分)如图,在中,D是BC的中点,E是AD的中点,过点A作,AF与CE的延长线相交于点F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)①若四边形AFBD是矩形,则必须满足条件_________;②若四边形AFBD是菱形,则必须满足条件_________.22.(8分)如图,在平面直角坐标系xOy中,一次函数y=-x+b的图象与反比例函数y=-的图象交于点A(-4,a)和B(1,m).(1)求b的值和点B的坐标;(2)如果P(n,0)是x轴上一点,过点P作x轴垂线,交一次函数于点M,交反比例函数于点N,当点M在点N上方时,直接写出n的取值范围.23.(8分)正方形中,点是上一点,过点作交射线于点,连结.(1)已知点在线段上.①若,求度数;②求证:.(2)已知正方形边长为,且,请直接写出线段的长.24.(8分)先化简,再求值:当m=10时,求的值.25.(10分)如图,直线l1的函数解析式为y=﹣2x+4,且l1与x轴交于点D,直线l2经过点A、B,直线l1、l2交于点C.(1)求直线l2的函数解析式;(2)求△ADC的面积;(3)在直线l2上是否存在点P,使得△ADP面积是△ADC面积的2倍?如果存在,请求出P坐标;如果不存在,请说明理由.26.(10分)综合与实践如图,为等腰直角三角形,,点为斜边的中点,是直角三角形,.保持不动,将沿射线向左平移,平移过程中点始终在射线上,且保持直线于点,直线于点.(1)如图1,当点与点重合时,与的数量关系是__________.(2)如图2,当点在线段上时,猜想与有怎样的数量关系与位置关系,并对你的猜想结果给予证明;(3)如图3,当点在的延长线上时,连接,若,则的长为__________.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
根据方差越大,则平均值的离散程度越大,波动大;反之,则它与其平均值的离散程度越小,波动小,稳定性越好,比较方差大小即可得出答案.【详解】∵S甲2=0.1.S乙2=0.62,S丙2=0.50,S丁2=0.45,∴S丁2<S丙2<S甲2<S乙2,∴成绩最稳定的是丁.故选D.【点睛】本题考查的知识点是方差.熟练应用方差的性质是解题的关键.2、B【解析】
根据分式的定义即可判断.【详解】依题意得0,解得,故选B.【点睛】此题主要考查分式有意义的条件,解题的关键是熟知分式的性质.3、C【解析】
欲求证是否为勾股数,这里给出三边的长,只要验证即可.【详解】解:、,故此选项错误;、不是整数,故此选项错误;、,故此选项正确;、0.3,0.4,0.5,勾股数为正整数,故此选项错误.故选:.【点睛】本题考查了勾股数的概念,一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.4、D【解析】
不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变.【详解】解:∵a<b,∴3a<3b,A选项正确;a+5<b+5,B选项正确;a-5<b-5,C选项正确;-3a>-3b,D选项错误;故选:D.【点睛】本题主要考查不等式的性质,主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5、A【解析】
此题可过P作PE⊥OM,过点N作NF⊥OM,根据勾股定理求出OP的长度,则N点坐标便不难求出.【详解】过P作PE⊥OM,过点N作NF⊥OM,∵顶点P的坐标是(3,4),∴OE=3,PE=4,∵四边形ABCD是平行四边形,∴OE=MF=3,∵4+3=7,∴点N的坐标为(7,4).故选A.【点睛】此题考查了平行四边形的性质,根据平行四边形的性质和点P的坐标,作出辅助线是解决本题的突破口.6、B【解析】分析:求出OA=OC=OD=BD,求出∠ADB=30°,求出∠ABO=60°,得出等边三角形AOB,求出AB=BO=AO=OD=OC=DC,推出BF=AB,求出∠H=∠CAH=15°,求出DE=EO,根据以上结论推出即可.详解:∵∠AFC=135°,CF与AH不垂直,∴点F不是AH的中点,即AF≠FH,∴①错误;∵四边形ABCD是矩形,∴∠BAD=90°,∵AD=,AB=1,∴tan∠ADB=,∴∠ADB=30°,∴∠ABO=60°,∵四边形ABCD是矩形,,,,,∴AO=BO,∴△ABO是等边三角形,∴AB=BO,,∵AF平分∠BAD,,,,,,,,∴②正确;,,,,,,,,,∴③正确;∵△AOB是等边三角形,,∵四边形ABCD是矩形,,OB=OD,AB=CD,∴DC=OC=OD,,,即BE=3ED,∴④正确;即正确的有3个,故选C.点睛:本题考查了矩形的性质,平行线的性质,角平分线定义,定义三角形的性质和判定,等边三角形的性质和判定等知识点的综合运用,难度偏大,对学生提出较高的要求.7、D【解析】
由平行四边形的性质和三角形中位线定理得出选项A、B、C正确;由OE≠BE,得出∠BOE≠∠OBC,选项D错误;即可得出结论.【详解】解:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,AB∥DC,AB=CD,
又∵点E是BC的中点,
∴OE是△BCD的中位线,
∴OE=DC,OE∥DC,,
∴∠BOE=∠ODC,
∴选项A、B、C正确;
∵OE≠BE,
∴∠BOE≠∠OBC,
∴选项D错误;
故选:D.【点睛】此题考查了平行四边形的性质:平行四边形的对角线互相平分.还考查了三角形中位线定理:三角形的中位线平行且等于三角形第三边的一半.8、D【解析】
如图,连接PE,点P绕点E顺时针旋转90°得到的对应点P′在x轴上,根据正方形的性质得到∠ABC=90°,∠AEB=90°,AE=BE,∠EAP′=∠EBP=45°,由点P坐标为(a,b),得到BP=b,根据全等三角形的性质即可得到结论.【详解】如图,连接PE,点P绕点E顺时针旋转90°得到的对应点P′在x轴上,∵四边形ABCD是正方形,∴∠ABC=90°,∴∠AEB=90°,AE=BE,∠EAP′=∠EBP=45°,∵点P坐标为(a,b),∴BP=b,∵∠PEP′=90°,∴∠AEP′=∠PEB,在△AEP′与△BEP中,∠EAP'=∠EBP∴△AEP′≌△BEP(ASA),∴AP′=BP=b,∴点P′的坐标是(b,0),故选:D.【点睛】此题考查全等三角形的判断与性质,正方形的性质,解题关键在于作辅助线.9、C【解析】
】(1)当MN过对称轴的直线时,解得:BN=,而MN=,BN+MN=5=AB;
(2)由BC∥x轴(B、C两点y坐标相同)推知∠BAE=∠CBA,而△ABC是等腰三角形,∠CBA≠∠BCA,故∠BAC=∠BAE错误;
(3)如上图,过点A作AD⊥BC、BE⊥AC,由△ABC是等腰三角形得到:EB是∠ABC的平分线,∠ACB-∠ANM=∠CAD=∠ABC;
(4)S四边形ACBM=S△ABC+S△ABM,其最大值为.【详解】解:将点A(2,0)代入抛物线y=ax2-x+4与直线y=x+b
解得:a=,b=-,
设:M点横坐标为m,则M(m,m2-m+4)、N(m,m-),
其它点坐标为A(2,0)、B(5,4)、C(0,4),
则AB=BC=5,则∠CAB=∠ACB,
∴△ABC是等腰三角形.
A、当MN过对称轴的直线时,此时点M、N的坐标分别为(,-)、(,),
由勾股定理得:BN=,而MN=,
BN+MN=5=AB,
故本选项错误;
B、∵BC∥x轴(B、C两点y坐标相同),
∴∠BAE=∠CBA,而△ABC是等腰三角形不是等边三角形,
∠CBA≠∠BCA,
∴∠BAC=∠BAE不成立,
故本选项错误;
C、如上图,过点A作AD⊥BC、BE⊥AC,
∵△ABC是等腰三角形,
∴EB是∠ABC的平分线,
易证:∠CAD=∠ABE=∠ABC,
而∠ACB-∠ANM=∠CAD=∠ABC,
故本选项正确;
D、S四边形ACBM=S△ABC+S△ABM,
S△ABC=10,
S△ABM=MN•(xB-xA)=-m2+7m-10,其最大值为,
故S四边形ACBM的最大值为10+=12.25,故本选项错误.
故选:C.【点睛】本题考查的是二次函数综合题,涉及到一次函数图象上点的坐标特征,二次函数图象上点的坐标特征,抛物线与x轴的交点,以及等腰三角形、平行线等几何知识,是一道难度较大的题目.10、C【解析】分三段讨论:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选C.二、填空题(每小题3分,共24分)11、【解析】
根据平行直线的k相同可求解.【详解】解:因为直线与直线平行,所以故答案为:【点睛】本题考查了一次函数的图像,当时,直线和直线平行.12、【解析】
先提公因式m,再利用平方差公式即可分解因式.【详解】解:,故答案为:.【点睛】本题考查了利用提公因式法和公式法因式分解,解题的关键是找出公因式,熟悉平方差公式.13、18【解析】
利用等腰三角形三线合一的性质可得BD=CD,又因E为AC中点,根据三角形的中位线定理及直角三角形斜边中线的性质可得CE=AC=7.5,DE=AB=7.5,再由△CDE的周长为24,求得CD=9,即可求得BC的长.【详解】∵AB=AC,AD平分∠BAC,∴BD=CD,AD⊥BC,∵E为AC中点,∴CE=AC==7.5,DE=AB==7.5,∵CD+DE+CE=24,∴CD=24-7.5-7.5=9,∴BC=18,故答案为18.【点睛】本题考查了等腰三角形的性质、三角形的中位线定理及直角三角形斜边的性质,求得CE=AC=7.5,DE=AB=7.5是解决问题的关键.14、【解析】
式子的分子和分母都乘以即可得出,根据b是负数去掉绝对值符号即可.【详解】∵b<0,∴=.故答案为:.【点睛】此题考查分母有理化,解题关键在于掌握运算法则15、1【解析】
根据直角三角形斜边上的中线是斜边的一半可以解答本题.【详解】∵△ABC中,CD⊥AB于D,E是AC的中点,∴∠CDA=90°,△ADC是直角三角形,∴AC=2DE,∵DE=5,∴AC=1,故答案为:1.【点睛】本题考查直角三角形斜边上的中线,解答本题的关键是明确题意,利用数形结合的思想解答.16、(2,1)【解析】
把y=1代入y=2x+4求出x的值,即可得出答案.【详解】把y=1代入y=2x-4得:1=2x-4,
x=2,
即一次函数y=2x-4与x轴的交点坐标是(2,1).
故答案是:(2,1).【点睛】考查了一次函数图象上点的坐标特征,注意:一次函数与x轴的交点的纵坐标是1.17、2【解析】
将点A(2,3)代入一次函数y=kx+b中即可求解.【详解】∵一次函数y=kx+b(k,b是常数,k≠0)的图象经过点A(2,3),
∴2k+b=3,
∵kx+b=3,
∴x=2
故答案是:2【点睛】考查的是一次函数图象上点的坐标特征,掌握图象上的点一定满足对应的函数解析式是解答此题的关键.18、x>1;【解析】
观察图象,找出直线l1∶y=ax在直线l2∶y=kx+b上方部分的x的取值范围即可.【详解】∵直线l1∶y=ax与直线l2∶y=kx+b交于点P的横坐标为1,∴不等式ax>kx+b的解集为x>1,故答案为x>1.【点睛】本题考查了一次函数与一元一次不等式的关系,正确把握数形结合思想是解此类问题的关键.三、解答题(共66分)19、x=2【解析】
解:.移项整理为,两边平方,整理得,解得:,.经检验:是原方程的解,是原方程的增根,舍去,∴原方程的解是.20、(1)详见解析;(2)【解析】
(1)由∠EAF=∠GAC.可得∠EAG=∠DAF且AG⊥BC,AM⊥DE可得∠ADF=∠B,且∠EAD=∠BAC可证:△ADE∽△ABC;(2)利用相似的性质得出,AB=BE+AE=4+3=7,即可解答【详解】(1)证明:AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∴∠AEF+∠EAF=90°,∠GAC+∠ACG=90°,∵∠EAF=∠GAC,∴∠AEF=∠ACG,∵∠EAD=∠CAB,∴△ADE∽△ABC;(2)解:∵△ADE∽△ABC,∴,∵AD=BE=4,AE=3,∴AB=BE+AE=4+3=7,∴,解得:AC=,∴CD=AC﹣AD=﹣4=.【点睛】此题考查三角形相似的判定与性质,解题关键在于掌握判定法则21、(1)见解析;(2)①AB=AC;②∠BAC=90°【解析】
(1)先证明△AEF≌△DEC,得出AF=DC,再根据有一组对边平行且相等证明四边形AFBD是平行四边形;(2))①当△ABC满足条件AB=AC时,可得出∠BDA=90°,则四边形AFBD是矩形;②当∠BAC=90°时,可得出AD=BD,则四边形AFBD是菱形。【详解】解:(1)∵E是AD中点∴AE=DE,
∵AF∥BC,∴∠AFE=∠DCE,
∵∠AEF=∠DEC,∴△AEF≌△DEC∴AF=DC,
∵D是BC中点,∴BD=DC,∴AF=BD,
又∵AF∥BC,即AF∥BD,∴四边形AFBD是平行四边形;(2)①当△ABC满足条件AB=AC时,四边形AFBD是矩形;理由是:∵AB=AC,D是BC中点,∴AD⊥BC,∴∠BDA=90°∵四边形AFBD是平行四边形,∴四边形AFBD是矩形.故答案为:AB=AC②当∠BAC=90°时,四边形AFBD是菱形。理由是:∵∠BAC=90°,D是BC中点,∴AD=BC=BD,∵四边形AFBD是平行四边形,∴四边形AFBD是菱形。故答案为:∠BAC=90°【点睛】本题主要考查平行四边形、矩形、菱形的判定,熟练掌握判定定理是关键,基础题要细心.22、(1)b的值为-3,点B的坐标为(1,-4);(2)n<-4或0<n<1【解析】
(1)将A(-4,a)和B(1,m)代入数y=-,可求a、m的值,即可求得B的坐标,然后利用待定系数法即可求得b;(2)由图象结合A、B的坐标直接得到.【详解】解:(1)∵反比例函数y=-的图象经过点A(-4,a)和B(1,m).∴-4a=-4,m=-4,∴a=1,m=-4,∴A(-4,1),B(1,-4),∵一次函数y=-x+b的图象经过B(1,-4),∴-1+b=-4,求得b=-3;故b的值为-3点B的坐标为(1,-4);(2)∵A(-4,1),B(1,-4),∴由图象可知,当n<-4或0<n<1,点M在点N上方.【点睛】本题考查了反比例函数和一次函数的交点问题,利用待定系数法求解析式是本题的关键.23、(1)①;②见解析;(2)的长为或【解析】
(1)①根据正方形性质,求出;根据等腰三角形性质,求出的度数,即可求得.②根据正方形对称性得到;根据四边形内角和证出;利用等角对等边即可证出.(2)分情况讨论:①当点F在线段BC上时;②当点F在线段CB延长线上时;根据正方形的对称性,证出;再根据等腰三角形的性质,求出线段NC,BN;利用勾股定理,求出BE、BD,进而求出DE.【详解】解:(1)①为正方形,.又,.②证明:正方形关于对称,,.又,又,,.(2)①当点F在线段BC上时,过E作MN⊥BC,垂足为N,交AD于M,如图1所示:∴N是CF的中点,∴BF=1,∴CF=1又∵四边形CDMN是矩形∴为等腰直角三角形∴②当点F在线段CB延长线上时,如图2所示:过点E作MN⊥BC,垂足为N,交AD于M∵正方形ABCD关于BD对称又∵又∴FC=3∴∴∴,综上所述,的长为或【点睛】本题考查了三角形全等、等腰三角形的性质、三线合一、勾股定理等知识点;难点在(2),注意分情况讨论;本题难度较大,属于中考压轴题.24、.【解析】
首先将原式的分子与分母分解因式,进而化简求出答案.【详解】====,当m=10时,原式==.【点睛】此题考查分式的化简求值,解题关键在于掌握运算法则25、(1)直线l2的函数解析式为y=x﹣1(2)2(2)在直线l2上存在点P(1,﹣4)或(9,4),使得△ADP面积是△ADC面积的2倍.【解析】试题分析:(1)根据A、B的坐标,设直线l2的函数解析式为y=kx+b,利用待定系数发求出函数l2的解析式;(2)由函数的解析式联立方程组,求解方程组,得到C点坐标,令y=-2x+4=0,求出D点坐标,然后求解三角形的面积;(2)假设存在,根据两三角形面积间的关系|yP
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 青海省大通回族自治县第二完全中学2024-2025学年高一上学期期中教学质量检测地理试题(含答案)
- 树立正确的消费观教案
- 生活中的优化问题举例 教学设计 教案
- 基础日语1知到智慧树章节测试课后答案2024年秋山西大学
- 2024年北京版小学三年级上学期期中英语试题及解答参考
- 牛津译林版初一上学期期中英语试题与参考答案
- 《建筑分析故宫》课件
- 计算机病毒的教学设计
- 《广告精美画面》课件
- 《中医药适宜技术》课件
- 2024二手房买方违约催告函范本
- 医学心理学题库含答案
- 2024年中国绿发投资集团限公司夏季招聘高校毕业生117名公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 商用储能电站项目可行性研究报告
- 小区绿地设计说明
- 《新编秘书实务》教学大纲
- 学术论文文献阅读与机助汉英翻译智慧树知到期末考试答案2024年
- 电动自行车全链条安全整治行动工作总结
- 山东省烟台市福山区(五四制)2023-2024学年九年级上学期期末考试数学试题
- 2023年北京市各区(东西海朝丰等)中考英语一模汇编 书面表达含详解
- 部编版语文五年级上册阅读训练:课内阅读+课外阅读
评论
0/150
提交评论