




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如果不等式组有解,那么m的取值范围是
(
)A.m>5
B.m<5
C.m≥5
D.m≤52.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A., B.,C., D.,3.把不等式x+2≤0的解集在数轴上表示出来,则正确的是()A. B. C. D.4.如图,平行四边形中,,,,动点从点出发,沿运动至点停止,设运动的路程为,的面积为,则与的函数关系用图象表示正确的是()A. B.C. D.5.若a<b,则下列结论不一定成立的是()A. B. C. D.6.下列各多项式能进行因式分解的是()A.x+1 B.x2+x+1 C.x7.如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点,第二次点跳动至点第三次点跳动至点,第四次点跳动至点……,依此规律跳动下去,则点与点之间的距离是()A.2017 B.2018 C.2019 D.20208.直线y=kx+b不经过第三象限,则k、b应满足()A.k>0,b<0B.k<0,b>0C.k<0b<0D.k<0,b≥09.某居民今年1至6月份(共6个月)的月平均用水量5t,其中1至5月份月用水量(单位:t)统计如图所示,根据表中信息,该户今年1至6月份用水量的中位数和众数分别是()A.4,5 B.4.5,6 C.5,6 D.5.5,610.能够判定一个四边形是平行四边形的条件是()A.一组对角相等 B.两条对角线互相平分C.两条对角线互相垂直 D.一对邻角的和为180°11.对于抛物线y=﹣(x+2)2﹣1,下列说法错误的是()A.开口向下B.对称轴是直线x=﹣2C.x>﹣2时,y随x的增大而增大D.x=﹣2,函数有最大值y=﹣112.下列图形中的曲线不表示y是x的函数的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=10,则DOE的周长为_____.14.如图,平行四边形中,点为边上一点,和交于点,已知的面积等于6,的面积等于4,则四边形的面积等于__________.15.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为_____.16.已知:如图,四边形中,,要使四边形为平行四边形,需添加一个条件是:__________.(只需填一个你认为正确的条件即可)17.如图,直线分别与轴、轴交于点,点是反比例函数的图象上位于直线下方的点,过点分别作轴、轴的垂线,垂足分别为点,交直线于点,若,则的值为__________.18.点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为D、C,若矩形ABCD的面积是8,则k的值为.三、解答题(共78分)19.(8分)如图,点D是△ABC的边AB上一点,连接CD,若AD=2,BD=4,∠ACD=∠B,求AC的长.20.(8分)如图,经过点A(6,0)的直线y=kx﹣3与直线y=﹣x交于点B,点P从点O出发以每秒1个单位长度的速度向点A匀速运动.(1)求点B的坐标;(2)当△OPB是直角三角形时,求点P运动的时间;(3)当BP平分△OAB的面积时,直线BP与y轴交于点D,求线段BD的长.21.(8分)直线过点,直线过点,求不等式的解集.22.(10分)在平面直角坐标系中,过点C(1,3)、D(3,1)分别作x轴的垂线,垂足分别为A、B.(1)求直线CD和直线OD的解析式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交直线CD于点N,是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中,设平移距离为t,△AOC与△OBD重叠部分的面积记为s,试求s与t的函数关系式.23.(10分)如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE=度.24.(10分)如图,直线与直线相交于点A(3,1),与x轴交于点B.(1)求k的值;(2)不等式的解集是________________.25.(12分)如图,是规格为8×8的正方形网格,请在所给网格中按下列要求操作:(1)在网格中建立平面直角坐标系,使A点坐标为(-2,4),B点坐标为(-4,2);(2)在(1)的前提下,在第二象限内的格点上找一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点的坐标是;(3)求((2)中△ABC的周长(结果保留根号);(4)画出((2)中△ABC关于y轴对称的△A'B'C'.26.如图,一次函数的图象与轴、轴分别交于、两点,与反比例函数交于点,过点分别作轴、轴的垂线,垂足分别为点、.若,,.(1)求点的坐标;(2)求一次函数和反比例函数的表达式.
参考答案一、选择题(每题4分,共48分)1、B【解析】解:∵不等式组有解,∴m≤x<1,∴m<1.故选B.点睛:本题主要考查了不等式组有解的条件,在解题时要会根据条件列出不等式.2、B【解析】
根据平行四边形的判定方法,对每个选项进行筛选可得答案.【详解】A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,故A选项不符合题意;B、AB=CD,AO=CO不能证明四边形ABCD是平行四边形,故本选项符合题意;C、∵AD//BC,AD=BC,∴四边形ABCD是平行四边形,故C选项不符合题意;D、∵AB∥CD,∴∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又∵∠BAD=∠BCD,∴∠ABC=∠ADC,∵∠BAD=∠BCD,∠ABC=∠ADC,∴四边形ABCD是平行四边形,故D选项不符合题意,故选B.【点睛】本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.3、D【解析】试题分析:根据一元一次不等式的解法解不等式x+1≤0,得x≤﹣1.表示在数轴上为:.故选D考点:不等式的解集4、D【解析】
当点E在BC上运动时,三角形的面积不断增大,当点E在DC上运动时,三角形的面积不变,当点E在AD上运动时三角形的面积不等减小,然后计算出三角形的最大面积即可得出答案.【详解】当点E在BC上运动时,三角形的面积不断增大,最大面积=×3××4=3;当点E在DC上运动时,三角形的面积为定值3.当点E在AD上运动时三角形的面不断减小,当点E与点A重合时,面积为0.故选:D.【点睛】此题考查动点问题的函数图象,解题关键在于结合函数图象进行解答.5、D【解析】
由不等式的性质进行计算并作出正确的判断.【详解】A.在不等式a<b的两边同时减去1,不等式仍成立,即a−1<b−1,故本选项错误;B.在不等式a<b的两边同时乘以2,不等式仍成立,即2a<2b,故本选项错误;C.在不等式a<b的两边同时乘以,不等号的方向改变,即,故本选项错误;D.当a=−5,b=1时,不等式a2<b2不成立,故本选项正确;故选:D.【点睛】本题考查不等式的性质,在利用不等式的性质时需注意,在给不等式的两边同时乘以或除以某数(或式)时,需判断这个数(或式)的正负,从而判断改不改变不等号的方向.解决本题时还需注意,要判断一个结论错误,只需要举一个反例即可.6、C【解析】
利用平方差公式及完全平方公式的结构特征进行判断即可.【详解】A.x+1不能进行因式分解;B.x2C.x2-1可以分解为(x+1)(D.x2+4【点睛】本题考查因式分解,解题的关键是掌握因式分解的方法.7、C【解析】
根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2017与点A2018的坐标,进而可求出点A2017与点A2018之间的距离.【详解】解:观察发现,第2次跳动至点的坐标是(2,1),
第4次跳动至点的坐标是(3,2),
第6次跳动至点的坐标是(4,3),
第8次跳动至点的坐标是(5,4),
…
第2n次跳动至点的坐标是(n+1,n),
则第2018次跳动至点的坐标是(1010,1009),
第2017次跳动至点A2017的坐标是(-1009,1009).
∵点A2017与点A2018的纵坐标相等,
∴点A2017与点A2018之间的距离=1010-(-1009)=2019,
故选C.【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.8、D.【解析】试题解析:∵直线y=kx+b不经过第三象限,∴y=kx+b的图象经过第一、二、四象限或第二,四象限,∵直线必经过二、四象限,∴k<1.当图象过一、二四象限,直线与y轴正半轴相交时:b>1.当图象过原点时:b=1,∴b≥1,故选D.考点:一次函数图象与系数的关系.9、D【解析】
先根据平均数的定义求出6月份的用水量,再根据中位数和众数的定义求解可得.【详解】解:根据题意知6月份的用水量为5×6-(3+6+4+5+6)=6(t),
∴1至6月份用水量从小到大排列为:3、4、5、6、6、6,
则该户今年1至6月份用水量的中位数为=5.5、众数为6,
故选D.【点睛】本题主要考查众数和中位数,解题的关键是根据平均数定义求出6月份用水量及众数和中位数的定义.10、B【解析】试题分析:平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定方法选择即可.解:根据平行四边形的判定可知B正确.故选B.【点评】本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.11、C【解析】
根据二次函数的性质依次判断各个选项后即可解答.【详解】∵y=﹣(x+2)2﹣1,∴该抛物线的开口向下,顶点坐标是(﹣2,﹣1),对称轴为直线x=﹣2,当x=﹣2时,函数有最大值y=﹣1,当x>﹣2时,y随x的增大而减小,故选项C的说法错误.故选C.【点睛】本题考查了二次函数的性质,熟练运用二次函数的性质是解决问题的关键.12、C【解析】
函数是指:对于任何一个自变量x的值都有唯一确定的函数值y与之相对应.【详解】根据函数的图象,选项C的图象中,x取一个值,有两个y与之对应,故不是函数.故选C【点睛】考点:函数的定义二、填空题(每题4分,共24分)13、1【解析】
由平行四边形的性质得出AB=CD,AD=BC,OB=OD=BD=5,得出BC+CD=18,证出OE是△BCD的中位线,DE=CD,由三角形中位线定理得出OE=BC,△DOE的周长=OD+OE+DE=OD+(BC+CD),即可得出结果.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OB=OD=BD=5,∵平行四边形ABCD的周长为36,∴BC+CD=18,∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD,∴OE=BC,∴△DOE的周长=OD+OE+DE=OD+(BC+CD)=5+9=1;故答案为:1.【点睛】本题考查平行四边形的性质、三角形中位线的性质,熟练运用平行四边形和三角形中位线的性质定理是解题的关键.14、11【解析】
由△ABF的面积等于6,△BEF的面积等于4,可得EF:AF=2:3,进而证明△ADF∽△EBF,根据相似三角形的性质可得,继而求出S△ABD=15,再证明△BCD≌△DAB,从而得S△BCD=S△DAB=15,进而利用S四边形CDFE=S△BCD-S△BEF即可求得答案.【详解】∵△ABF的面积等于6,△BEF的面积等于4,∴EF:AF=4:6=2:3,∵四边形ABCD是平行四边形,∴AD//BC,∴△ADF∽△EBF,∴,∵S△BEF=4,∴S△ADF=9,∴S△ABD=S△ABF+S△AFD=6+9=15,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵BD是公共边,∴△BCD≌△DAB,∴S△BCD=S△DAB=15,∴S四边形CDFE=S△BCD-S△BEF=15-4=11,故答案为11.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟练掌握并灵活运用相关知识是解题的关键.15、3或1.【解析】
当为直角三角形时,有两种情况:①当点落在矩形内部时,如答图1所示.连结,先利用勾股定理计算出,根据折叠的性质得,而当为直角三角形时,只能得到,所以点、、共线,即沿折叠,使点落在对角线上的点处,则,,可计算出,设,则,,然后在中运用勾股定理可计算出.②当点落在边上时,如答图2所示.此时四边形为正方形.【详解】解:当为直角三角形时,有两种情况:①当点落在矩形内部时,如答图1所示.连结,在中,,,,沿折叠,使点落在点处,,当为直角三角形时,只能得到,点、、共线,即沿折叠,使点落在对角线上的点处,如图,,,,设,则,,在中,,,解得,;②当点落在边上时,如答图2所示.此时为正方形,.综上所述,的长为3或1.故答案为:3或1.【点睛】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.16、.(答案不唯一)【解析】
由AO=OC,根据对角线互相平分的四边形是平行四边形,即可得添加BO=OD即可.【详解】添加的BO=OD.理由:∵在四边形ABCD中,BO=DO,AO=CO,∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形).【点睛】此题考查了平行四边形的判定.此题难度不大,注意掌握平行四边形的判定定理是解此题的关键.17、-3【解析】
首先设PN=x,PM=y,由已知条件得出EE′=PN=x,FF′=PM=y,A(-5,0),B(0,5),通过等量转换,列出关系式,求出,又因为反比例函数在第二象限,进而得解.【详解】过点F作FF′⊥OA与F′,过点E作EE′⊥OB与E′,如图所示,设PN=x,PM=y,由已知条件,得EE′=PN=x,FF′=PM=y,A(-5,0),B(0,5)∴OA=OB=5∴∠OAB=∠OBA=45°∴FF′=AF′=y,EE′=BE′=x,∴AF=,BE=又∵∴∴又∵反比例函数在第二象限,∴.【点睛】此题主要考查一次函数和反比例函数的综合应用,熟练掌握,即可解题.18、12或4【解析】试题分析:当图形处于同一个象限时,则k=8+4=12;当图形不在同一个象限时,则k=8-4=4.考点:反比例函数的性质三、解答题(共78分)19、AC=2【解析】
可证明△ACD∽△ABC,则,即得出AC2=AD•AB,从而得出AC的长.【详解】∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴,∴AC2=AD·AB,∴AC2=12,∴AC=2(负值舍去)【点睛】本题考查了相似三角形的判定和性质,两个角相等,两个三角形相似.20、(1)点B的坐标(2,-2);(2)当△OPB是直角三角形时,求点P运动的时间为2秒或4秒;(3)当BP平分△OAB的面积时,线段BD的长为2.【解析】
(1)根据点A的坐标,利用待定系数法可求出直线AB的解析式,联立直线AB及OB的解析式成方程组,通过解方程组可求出点B的坐标;
(2)由∠BOP=45°可得出∠OPB=90°或∠OBP=90°,①当∠OPB=90°时,△OPB为等腰直角三角形,根据等腰直角三角形的性质可得出OP的长,结合点P的运动速度可求出点P运动的时间;②当∠OBP=90°时,△OPB为等腰直角三角形,根据等腰直角三角形的性质可得出OP的长,结合点P的运动速度可求出点P运动的时间.综上,此问得解;
(3)由BP平分△OAB的面积可得出OP=AP,进而可得出点P的坐标,根据点B,P的坐标,利用待定系数法可求出直线BP的解析式,利用一次函数图象上点的坐标特征可求出点D的坐标,过点B作BE⊥y轴于点E,利用勾股定理即可求出BD的长.【详解】(1)直线y=kx﹣3过点A(1,0),所以,0=1k-3,解得:k=,直线AB为:-3,,解得:,所以,点B的坐标(2,-2)(2)∵∠BOP=45°,△OPB是直角三角形,
∴∠OPB=90°或∠OBP=90°,如图1所示:
①当∠OPB=90°时,△OPB为等腰直角三角形,
∴OP=BP=2,
又∵点P从点O出发以每秒1个单位长度的速度向点A匀速运动,
∴此时点P的运动时间为2秒;
②当∠OBP=90°时,△OPB为等腰直角三角形,
∴OP=2BP=4,
又∵点P从点O出发以每秒1个单位长度的速度向点A匀速运动,
∴此时点P的运动时间为4秒.
综上,当△OPB是直角三角形时,点P的运动时间为2秒或4秒.
(3)∵BP平分△OAB的面积,
∴S△OBP=S△ABP,
∴OP=AP,
∴点P的坐标为(3,0).
设直线BP的解析式为y=ax+b(a≠0),
将B(2,-2),点P(3,0)代入y=ax+b,得:,
解得:,
∴直线BP的解析式为y=2x-1.
当x=0时,y=2x-1=-1,
∴点D的坐标为(0,-1).
过点B作BE⊥y轴于点E,如图2所示.
∵点B的坐标为(2,-2),点D的坐标为(0,-1),
∴BE=2,CE=4,
∴BD==2,
∴当BP平分△OAB的面积时,线段BD的长为2.【点睛】本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征、等腰直角三角形、三角形的面积以及勾股定理,解题的关键是:(1)联立直线AB及OB的解析式成方程组,通过解方程组求出点B的坐标;(2)分∠OPB=90°和∠OBP=90°两种情况,利用等腰直角三角形的性质求出点P的运动时间;(3)根据点的坐标,利用待定系数法求出直线BP的解析式.21、【解析】
将代入,可解得k的值,将代入,可解得m的值,再将k和m的值代入不等式,解不等式即可【详解】解:将代入得:,解得:k=1;将代入得:,解得:;∴,则可得解得故答案为:【点睛】本题考查待定系数法求一次函数的解析式以及不等式的解法,,比较简单,应熟练掌握22、(1)直线OD的解析式为y=x;(2)存在.满足条件的点M的横坐标或,理由见解析;(3)S=﹣(t﹣1)2+.【解析】
(1)理由待定系数法即可解决问题;
(2)如图,设M(m,m),则N(m,-m+1).当AC=MN时,A、C、M、N为顶点的四边形为平行四边形,可得|-m+1-m|=3,解方程即可;
(3)如图,设平移中的三角形为△A′O′C′,点C′在线段CD上.设O′C′与x轴交于点E,与直线OD交于点P;设A′C′与x轴交于点F,与直线OD交于点Q.根据S=S△OFQ-S△OEP=OF•FQ-OE•PG计算即可;【详解】(1)设直线CD的解析式为y=kx+b,则有,解得,∴直线CD的解析式为y=﹣x+1.设直线OD的解析式为y=mx,则有3m=1,m=,∴直线OD的解析式为y=x.(2)存在.理由:如图,设M(m,m),则N(m,﹣m+1).当AC=MN时,A、C、M、N为顶点的四边形为平行四边形,∴|﹣m+1﹣m|=3,解得m=或,∴满足条件的点M的横坐标或.(3)如图,设平移中的三角形为△A′O′C′,点C′在线段CD上.设O′C′与x轴交于点E,与直线OD交于点P;设A′C′与x轴交于点F,与直线OD交于点Q.因为平移距离为t,所以水平方向的平移距离为t(0≤t<2),则图中AF=t,F(1+t,0),Q(1+t,+t),C′(1+t,3﹣t).设直线O′C′的解析式为y=3x+b,将C′(1+t,3﹣t)代入得:b=﹣1t,∴直线O′C′的解析式为y=3x﹣1t.∴E(t,0).联立y=3x﹣1t与y=x,解得x=t,∴P(t,t).过点P作PG⊥x轴于点G,则PG=t.∴S=S△OFQ﹣S△OEP=OF•FQ﹣OE•PG=(1+t)(+t)﹣•t•t=﹣(t﹣1)2+.【点睛】本题考查一次函数综合题、待定系数法、函数图象上点的坐标特征、平行四边形、平移变换、图形面积计算等知识点,有一定的难度.第(2)问中,解题关键是根据平行四边形定义,得到MN=AC=3,由此列出方程求解;第(3)问中,解题关键是求出S的表达式,注意图形面积的计算方法.23、(1)详见解析(2)详见解析(3)1【解析】
(1)根据正方形的四条边都相等可得BC=DC,对角线平分一组对角可得∠BCP=∠DCP,然后利用“边角边”证明即可.(2)根据全等三角形对应角相等可得∠CBP=∠CDP,根据等边对等角可得∠CBP=∠E,然后求出∠DPE=∠DCE,再根据两直线平行,同位角相等可得∠DCE=∠ABC,从而得证.(3)根据(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美甲合同转让协议书模板
- 花草租赁解除合同协议书
- 船员培训专项协议书模板
- 网页设计团队外包协议书
- 风力发电安装转让协议书
- 签了购房协议不给签合同
- 电梯加楼梯施工合同协议
- 职工餐厅承包合同协议书
- 门店分红股东协议书范本
- 腺肌病的护理
- 北京市朝阳区2024-2025学年高一下学期期末语文试题(含答案)
- 安徽高危人员管理办法
- 牙外伤护理配合课件
- 2025年辅警招聘考试试题及参考答案
- 2025年湖南省高考物理真题
- 2025年吉林省中考数学试卷真题(含答案详解)
- 医学美容技术专业教学标准(高等职业教育专科)2025修订
- 党课课件含讲稿:以作风建设新成效激发干事创业新作为
- 军事知识科普儿童课件
- 谷歌付费协议书
- 爆破三员安全培训课件
评论
0/150
提交评论