版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.在Rt△ABC中,∠C=90°,AB=13,AC=12,则sinB的值是()A. B. C. D.2.下面计算正确的是()A. B. C. D.(a>0)3.下列根式不是最简二次根式的是()A. B. C. D.4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A.0.7米 B.1.5米 C.2.2米 D.2.4米5.如图,在平面直角坐标系中,直线与双曲线交于、两点,且点的坐标为,将直线向上平移个单位,交双曲线于点,交轴于点,且的面积是.给出以下结论:(1);(2)点的坐标是;(3);(4).其中正确的结论有A.1个 B.2个 C.3个 D.4个6.若x=1是方程x2-2mx+3=0的解,则m的值为()A. B.2 C. D.-27.如图,菱形ABCD的一边AB的中点E到对角线交点O的距离为4cm,则此菱形的周长为()A.8cm B.16cm C.cm D.32cm8.小强同学投掷30次实心球的成绩如下表所示:由上表可知小强同学投掷30次实心球成绩的众数与中位数分别是()A.12m,11.9m B.12m,12.1m C.12.1m,11.9m D.12.1m,12m9.下列图形中既是轴对称图形又是中心对称图形的是()A.等腰三角形 B.平行四边形 C.正五边形 D.正十边形10.如图,已知△ABC和△PBD都是正方形网格上的格点三角形(顶点为网格线的交点),要使ΔABC∽ΔPBD,则点P的位置应落在A.点上 B.点上 C.点上 D.点上11.下列图形都是由同样大小的黑、白圆按照一定规律组成的,其中第①个图形中一共有2个白色圆,第②个图形中一共有8个白色圆,第③个图形中一共有16个白色圆,按此规律排列下去,第⑦个图形中白色圆的个数是()A.96 B.86 C.68 D.5212.如图所示,在正方形ABCD中,点E,F分别在CD,BC上,且BF=CE,连接BE,AF相交于点G,则下列结论不正确的是()A.BE=AF B.∠DAF=∠BECC.∠AFB+∠BEC=90° D.AG⊥BE二、填空题(每题4分,共24分)13.比较大小2_____.14.m,n分别是的整数部分和小数部分,则2m-n=______.15.在平面直角坐标系xOy中,正方形A1B1C1O、A2B2C2B1、A3B3C3B2,…,按图所示的方式放置.点A1、A2、A3,…和点B1、B2、B3,…分别在直线y=kx+b和x轴上.已知C1(1,﹣1),C2(,),则点A3的坐标是_____.16.为了了解我县八年级学生的视力情况,从中随机抽取名学生进行视力情况检查,这个问题中的样本容量是___.17.如图,在口ABCD中,E为边BC上一点,以AE为边作矩形AEFG.若∠BAE=40°,∠CEF=15°,则∠D的大小为_____度.18.化简:的结果是________.三、解答题(共78分)19.(8分)阅读理解:我们已经学习的直角三角形知识包括:勾股定理,30°、45°特殊角的直角三角形的边之间的关系等,在解决初中数学问题上起到重要作用,锐角三角函数是另一个研究直角三角形中边角间关系的知识,通过锐角三角函数也可以帮助解决数学问题.阅读下列材料,完成习题:如图1,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦(sine),记作sinA,即sinA=例如:a=3,c=7,则sinA=问题:在Rt△ABC中,∠C=90°(1)如图2,BC=5,AB=8,求sinA的值.(2)如图3,当∠A=45°时,求sinB的值.(3)AC=2,sinB=,求BC的长度.20.(8分)如图,中,,,.动点、均从顶点同时出发,点在边上运动,点在边上运动.已知点的运动速度是.当运动停止时,由,,构成的三角形恰好与相似.(1)试求点的运动速度;(2)求出此时、两点间的距离.21.(8分)某经销商从市场得知如下信息:A品牌手表B品牌手表进价(元/块)700100售价(元/块)900160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.(1)试写出y与x之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;(3)选择哪种进货方案,该经销商可获利最大;最大利润是多少元.22.(10分)如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF.连结DE,过点E作EG⊥DE,使EG=DE,连结FG、FC(1)请判断:FG与CE的数量关系是________,位置关系是________
。(2)如图2,若点E、F分别是边CB、BA延长线上的点,其他条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E、F分别是边BC、AB延长线上的点,其他条件不变,(1)中结论是否仍然成立?请直接写出你的判断。23.(10分)某中学七、八年级各选派10名选手参加知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分选手人数分别为a,b.(1)请依据图表中的数据,求a,b的值.(2)直接写出表中的m=,n=.(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.24.(10分)A、B、C三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表和图1:竞选人ABC笔试859590口试8085(1)请将表和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由本系的200名学生进行投票,三位候选人的得票情况如图2(没有弃权票,每名学生只能推荐一个),则A在扇形统计图中所占的圆心角是度.(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4:4:2的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.25.(12分)如图,已知Rt△ABC中,∠ACB=90°,CD⊥AB于D,∠BAC的平分线分别交BC,CD于E、F.(1)试说明△CEF是等腰三角形.(2)若点E恰好在线段AB的垂直平分线上,试说明线段AC与线段AB之间的数量关系.26.如图1,在平面直角坐标系中,O为坐标原点,点A(﹣4,0),直线l∥x轴,交y轴于点C(0,3),点B(﹣4,3)在直线l上,将矩形OABC绕点O按顺时针方向旋转α度,得到矩形OA′B′C′,此时直线OA′、B′C′分别与直线l相交于点P、Q.(1)当α=90°时,点B′的坐标为.(2)如图2,当点A′落在l上时,点P的坐标为;(3)如图3,当矩形OA′B′C′的顶点B′落在l上时.①求OP的长度;②S△OPB′的值是.(4)在矩形OABC旋转的过程中(旋转角0°<α≤180°),以O,P,B′,Q为顶点的四边形能否成为平行四边形?如果能,请直接写出点B′和点P的坐标;如果不能,请简要说明理由.
参考答案一、选择题(每题4分,共48分)1、B【解析】
根据题意,直接运用三角函数的定义求解.【详解】解:∵∠C=90°,AB=13,AC=12,∴sinB=.故选:B.【点睛】本题主要考查的是锐角三角函数的定义,解答此类题目的关键是画出图形便可直观解答.2、B【解析】分析:根据合并同类二次根式、二次根式的除法、二次根式的乘法、二次根式的性质与化简逐项计算分析即可.详解:A.∵4与不是同类二次根式,不能合并,故错误;B.∵,故正确;C.,故错误;D.(a>0),故错误;故选B.点睛:本题考查了二次根式的有关运算,熟练掌握合并同类二次根式、二次根式的除法、二次根式的乘法、二次根式的性质是解答本题的关键.3、C【解析】【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式)是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A.,是最简二次根式,不符合题意;B.,是最简二次根式,不符合题意;C.,不是最简二次根式,符合题意;D.,是最简二次根式,不符合题意,故选C.【点睛】本题考查了最简二次根式,规律总结:满足下列两个条件的二次根式,叫做最简二次根式.(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.4、C【解析】
在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.5、C【解析】
(1)把A(4,a)代入,求得A为(4,2),然后代入求得k=8;(2)联立方程,解方程组即可求得B(-4,-2);
(3)根据同底等高的三角形相等,得出S△ABC=S△ABF;
(4)根据S△ABF=S△AOF+S△BOF列出,解得。【详解】解:(1)直线经过点,,,点在双曲线上,,故正确;(2)解得或,点的坐标是,故正确;(3)将直线向上平移个单位,交双曲线于点,交轴于点,,和是同底等高,,故错误;(4),,解得,故正确;故选:.【点睛】本题考查了反比例函数和一次函数的交点,待定系数法求反比例函数的解析式,三角形的面积等,求得交点坐标是解题的关键.6、B【解析】
把x=1代入方程解出m即可【详解】把x=1代入方程x2-2mx+3=0得:1-2m+3=0,则m=2,故选B【点睛】熟练掌握一元二次方程基础知识是解决本题的关键,难度较小7、D【解析】
根据菱形的性质可知AO=OC,继而根据中位线定理求得BC长,再根据菱形的四条边相等即可求得答案.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AE=BE,∴BC=2EO=2×4cm=8cm,即AB=BC=CD=AD=8cm,即菱形ABCD的周长为32cm,故选D.【点睛】本题考查了菱形的性质,三角形中位线定理,熟练掌握相关性质与定理是解题的关键.8、D【解析】
根据众数和中位数的定义分别进行判断即得答案.【详解】解:由表可知:12.1出现了10次,出现的次数最多,所以小强同学投掷30次实心球成绩的众数是12.1m,把这些数从小到大排列,最中间的第15、16个数是12、12,则中位数是12+122=12(m【点睛】本题考查众数和中位数的概念,众数是指一组数据中出现次数最多的数据,而中位数是指将一组数据按从小(大)到大(小)的顺序排列起来,位于最中间的数(或最中间两个数的平均数).具体判断时,切勿将表中的“成绩”与“频数”混淆,从而做出错误判断.9、D【解析】
根据轴对称图形和中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形.故错误;
B、不是轴对称图形,是中心对称图形.故错误;
C、是轴对称图形,不是中心对称图形.故错误;
D、是轴对称图形,也是中心对称图形.故正确.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.10、B【解析】
由图可知∠BPD一定是钝角,若要△ABC∽△PBD,则PB、PD与AB、AC的比值必须相等,可据此进行判断.【详解】解:由图知:∠BAC是钝角,又△ABC∽△PBD,则∠BPD一定是钝角,∠BPD=∠BAC,又BA=1,AC=1,∴BA:AC=1:,∴BP:PD=1:或BP:PD=:1,只有P1符合这样的要求,故P点应该在P1.
故选B.【点睛】此题考查了相似三角形的性质,以及勾股定理的运用,相似三角形的对应角相等,对应边成比例,书写相似三角形时,对应顶点要对应.熟练掌握相似三角形的性质是解本题的关键11、C【解析】
根据题意得出第n个图形中白色圆个数为n(n+1)+2(n﹣1),据此可得.【详解】解:∵第①个图形中白色圆个数2=1×2+2×0,第②个图形中白色圆个数8=2×3+2×1,第③个图形中白色圆个数16=3×4+2×2,……∴第⑦个图形中白色圆个数为7×8+2×6=68,故选C.【点睛】本题主要考查图形的变化规律,解题的关键是根据题意得出第n个图形中白色圆个数为n(n+1)+2(n﹣1).12、C【解析】∵ABCD是正方形,∴∠ABF=∠C=90°,AB=BC.∵BF=CE,∴△ABF≌△BCE.∴AF=BE(第一个正确).∠BAF=∠CBE,∠BFA=∠BEC(第三个错误).∵∠BAF+∠DAF=90°,∠BAF+∠BFA=90°,∴∠DAF=∠BEC(第二个正确).∵∠BAF=∠CBE,∠BAF+∠AFB=90°.∴∠CBE+∠AFB=90°.∴AG⊥BE(第四个正确).所以不正确的是C,故选C.二、填空题(每题4分,共24分)13、<【解析】
直接利用二次根式的性质将原数变形进而得出答案.【详解】∵2=<.故答案为:<.【点睛】本题主要考查了实数大小比较,正确将原数变形是解题的关键.14、【解析】
先估算出的大致范围,然后可求得-1的整数部分和小数部分,从而可得到m、n的值,最后代入计算即可.【详解】解:∵1<2<4,∴1<<2,∴0<-1<1.∴m=0,n=-1.∴2m-n=0-(-1)=1-.故答案为:【点睛】本题主要考查的是估算无理数的大小,求得的大致范围是解题的关键.15、(,)【解析】试题解析:连接A1C1,A2C2,A3C3,分别交x轴于点E、F、G,∵正方形A1B1C1O、A2B2C2B1、A3B3C3B2,∴A1与C1关于x轴对称,A2与C2关于x轴对称,A3与C3关于x轴对称,∵C1(1,-1),C2(,),∴A1(1,1),A2(,),∴OB1=2OE=2,OB2=OB1+2B1F=2+2×(-2)=5,将A1与A2的坐标代入y=kx+b中得:,解得:,∴直线解析式为y=x+,设B2G=A3G=t,则有A3坐标为(5+t,t),代入直线解析式得:b=(5+t)+,解得:t=,∴A3坐标为(,).考点:一次函数综合题.16、【解析】
根据样本容量则是指样本中个体的数目,可得答案.【详解】为了了解我县八年级学生的视力情况,从中随机抽取1200名学生进行视力情况检查,在这个问题中,样本容量是1200,故答案为:1200.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.17、1【解析】
想办法求出∠B,利用平行四边形的性质∠D=∠B即可解决问题.【详解】解:∵四边形AEFG是正方形,
∴∠AEF=90°,
∵∠CEF=15°,
∴∠AEB=180°-90°-15°=75°,
∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=1°,
∵四边形ABCD是平行四边形,
∴∠D=∠B=1°
故答案为:1.【点睛】本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.18、-2【解析】
化简二次根式并去括号即可.【详解】解:故答案为:-2【点睛】本题考查了二次根式的混合运算,计算较为简单,熟练掌握二次根式的化简是解题的关键.三、解答题(共78分)19、(1);(2);(3)2.【解析】分析:(1)根据sinA=直接写结论即可;(2)设AC=x,则BC=x,根据勾股定理得AB=,然后根据sinA=计算;(3)先根据sinB=求出AB的值,再利用勾股定理求BC的值即可.详解:(1)sinA=;(2)在Rt△ABC中,∠A=45°,设AC=x,则BC=x,AB=,则sinB=;(3)sinB=,则AB=4,由勾股定理得:BC2=AB2-AC2=16-12=4,∴BC=2.点睛:本题考查了信息迁移,勾股定理,正确理解在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦是解答本题的关键.20、(1);(2)D、E两点间的距离为或1.【解析】
(1)如图,设等E的运动速度为xcm/s.由题意AD=4cm,AE=2x.分两种情形分别构建方程即可解决问题.(2)分两种情形利用相似三角形的性质解决问题即可.【详解】解:(1)如图,设等E的运动速度为xcm/s.由题意AD=4cm,AE=2x.①当时,△ADE∽△ABC,∴,解得x=,∴点E的运动速度为cm/s.②当,△ADE∽△ACB,∴,∴x=,∴点E的是的为cm/s.(2)当△ADE∽△ABC时,,∴,∴DE=,当△ADE∽△ACB时,,∴,∴DE=1,综上所述,D、E两点间的距离为或1.【点睛】本题考查相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.21、(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.【解析】
(1)根据利润y=(A售价﹣A进价)x+(B售价﹣B进价)×(100﹣x)列式整理即可;(2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;(3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.【详解】解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.由700x+100(100﹣x)≤40000得x≤50.∴y与x之间的函数关系式为y=140x+6000(x≤50)(2)令y≥12600,即140x+6000≥12600,解得x≥47.1.又∵x≤50,∴经销商有以下三种进货方案:方案A品牌(块)B品牌(块)①4852②4951③5050(3)∵140>0,∴y随x的增大而增大.∴x=50时y取得最大值.又∵140×50+6000=13000,∴选择方案③进货时,经销商可获利最大,最大利润是13000元.【点睛】本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用.22、(1)FG=CE,FG∥CE;(2)详见解析;(3)成立,理由详见解析.【解析】
(1)构造辅助线后证明△HGE≌△CED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=CE,FG∥CE;
(2)构造辅助线后证明△HGE≌△CED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=CE,FG∥CE;
(3)证明△CBF≌△DCE,即可证明四边形CEGF是平行四边形,即可得出结论.【详解】(1)FG=CE,FG∥CE;理由如下:
过点G作GH⊥CB的延长线于点H,如图1所示:则GH∥BF,∠GHE=90°,
∵EG⊥DE,
∴∠GEH+∠DEC=90°,
∵∠GEH+∠HGE=90°,
∴∠DEC=∠HGE,
在△HGE与△CED中,,
∴△HGE≌△CED(AAS),
∴GH=CE,HE=CD,
∵CE=BF,
∴GH=BF,
∵GH∥BF,
∴四边形GHBF是矩形,
∴GF=BH,FG∥CH
∴FG∥CE,
∵四边形ABCD是正方形,
∴CD=BC,
∴HE=BC,
∴HE+EB=BC+EB,
∴BH=EC,
∴FG=EC;(2)FG=CE,FG∥CE仍然成立;理由如下:
过点G作GH⊥CB的延长线于点H,如图2所示:∵EG⊥DE,
∴∠GEH+∠DEC=90°,
∵∠GEH+∠HGE=90°,
∴∠DEC=∠HGE,
在△HGE与△CED中,,
∴△HGE≌△CED(AAS),
∴GH=CE,HE=CD,
∵CE=BF,∴GH=BF,
∵GH∥BF,
∴四边形GHBF是矩形,
∴GF=BH,FG∥CH
∴FG∥CE,
∵四边形ABCD是正方形,
∴CD=BC,
∴HE=BC,
∴HE+EB=BC+EB,
∴BH=EC,
∴FG=EC;
(3)FG=CE,FG∥CE仍然成立.理由如下:
∵四边形ABCD是正方形,
∴BC=CD,∠FBC=∠ECD=90°,
在△CBF与△DCE中,,
∴△CBF≌△DCE(SAS),
∴∠BCF=∠CDE,CF=DE,
∵EG=DE,∴CF=EG,
∵DE⊥EG
∴∠DEC+∠CEG=90°
∵∠CDE+∠DEC=90°
∴∠CDE=∠CEG,
∴∠BCF=∠CEG,
∴CF∥EG,
∴四边形CEGF平行四边形,
∴FG∥CE,FG=CE.【点睛】四边形综合题,考查了正方形的性质、全等三角形的判定与性质、平行四边形的判定与性质、矩形的判定与性质等知识.本题综合性强,有一定难度,解题的关键是利用全等三角形的对应边相等进行线段的等量代换,从而求证出平行四边形.23、(1)a=5,b=1;(2)m=6,n=20%;(3)答案见解析.【解析】试题分析:(1)根据题意可以得到关于a、b的方程组,从而可以求得a、b的值;(2)根据表格可以得到m和n的值;(3)根据表格中的平均数和中位数进行说明即可解答本题.试题解析:解:(1)由题意和图表中的数据,可得:,即,解得:;(2)七年级的中位数m=6,优秀率n=2÷10=20%;(3)八年级队成绩比七年级队好的理由:①八年级队的平均分比七年级队高,说明八年级队总成绩比七年级队的总成绩好.②中位数七年级队是6,八年级队是7.5,说明八年级队半数以上的学生比七年级队半数以上的成绩好.点睛:本题考查条形统计图、中位数、方差,解题的关键是明确题意,找出所求问题需要的条件.24、(1)表格数据90,图见解析;(2)126°;(3)B当选,理由见解析.【解析】试题分析:(1)由条形统计图可知,A的口试成绩为90分,填入表中即可;(2)由图2中A所占的百分比为35%可知,在图2中A所占的圆心角为:360°×35%;(3)按:最后成绩=笔试成绩×40%+口试成绩×40%+得票成绩×20%分别计算出三人的成绩,再看谁的成绩最高,即可得到本题答案.试题解析:(1)由条形统计图可知:A的口试成绩为90分,填入表格如下:竞选人ABC笔试859590口试908085(2)由图2可知,A所占的百分比为35%,∴在图2中,A所占的圆心角为:360°×35%=126°;(3)由题意可知:A的最后得分为:85×40%+90×40%+200×35%×20%=84(分),B的最后得分为:95×40%+80×40%+200×40%×20%=86(分),C的最后得分为:90×40%+85×40%+200×25%×20%=80(分),∵86>84>80,∴根据成绩可以判定B当选.25、(1)见解析(2)见解析【解析】
(1)首先根据条件∠ACB=90°,CD是AB边上的高,可证出∠B+∠BAC=90°,∠CAD+∠ACD=90°,再根据同角的补角相等可得到∠ACD=∠B,再利用三角形的外角与内角的关系可得到∠CFE=∠CEF,最后利用等角对等边即可得出答案;(2)线段垂直平分线的性质得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B,由于AE是∠BAC的平分线,得到∠CAE=∠EAB,根据直角三角形的性质即可得到结论.【详解】解:(1)∵∠ACB=90°,∴∠B+∠BAC=90°,∵CD⊥AB,∴∠CAD+∠ACD=90°,∴∠ACD=∠B,∵AE是∠BAC的平分线,∴∠CAE=∠EAB,∵∠EAB+∠B=∠CEA,∠CAE+∠ACD=∠CFE,∴∠CFE=∠CEF,∴CF=CE,∴△CEF是等腰三角形;(2)∵点E恰好在线段AB的垂直平分线上,∴AE=BE,∴∠EAB=∠B,∵AE是∠BAC的平分线,∴∠CAE=∠EAB,∴∠CAB=2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 钢管扣件2024年度租赁协议
- 甲方出售乙方2024年度插秧机合同
- 学校合作申请专利协议范本
- 柴油买卖合同
- 二零二四年卫星发射服务合同2篇
- 2024年度股权转让合同协议范本3篇
- 青年员工职业发展文档
- 2024年度旅游业务与合作运营合同3篇
- 《笔记本培训》课件
- 《石油公司简介》课件
- GB/T 44830-2024酶联免疫试剂盒检测通则
- 员工赔偿金保密协议书(2篇)
- 责任险发展空间
- 2024年国企考试全国招考每日(5.10)管理单位遴选500模拟题附带答案详解
- 中华人民共和国保守国家秘密法实施条例
- 1.2坚持两个毫不动摇课件高中政治统编版必修二经济与社会
- 10以内连加连减练习题(直接打印版)
- 2024秋期国家开放大学专科《液压与气压传动》一平台在线形考(形考任务+实验报告)试题及答案
- 2024-2025学年统编版(2024)道德与法治小学一年级上册教学设计
- 国开2024年秋《经济法学》计分作业1-4答案形考任务
- 幼儿园中班数学活动《喂猫咪》
评论
0/150
提交评论