河南省平顶山市叶县2023年八年级数学第二学期期末教学质量检测模拟试题含解析_第1页
河南省平顶山市叶县2023年八年级数学第二学期期末教学质量检测模拟试题含解析_第2页
河南省平顶山市叶县2023年八年级数学第二学期期末教学质量检测模拟试题含解析_第3页
河南省平顶山市叶县2023年八年级数学第二学期期末教学质量检测模拟试题含解析_第4页
河南省平顶山市叶县2023年八年级数学第二学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下图表示一次函数y=mx+n与正比例函数y=mnx(m,n是常数,且mn0)的大致图像是()A. B.C. D.2.一元二次方程的解为()A. B.B. C., D.,3.为改善城区居住环境,某市对4000米长的玉带河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化米,则所列方程正确的是()A. B. C. D.4.下列曲线中能够表示y是x的函数的有()A.①②③ B.①②④ C.①③④ D.②③④5.把一元二次方程2x2-3x-1=0配方后可得(

)A.x-322=114

B.x-3226.下列图形中,是中心对称但不是轴对称图形的有()A.1个 B.2个 C.3个 D.4个7.对于一次函数y=(3k+6)x﹣k,y随x的增大而减小,则k的取值范围是()A.k<0 B.k<﹣2 C.k>﹣2 D.﹣2<k<08.代数式有意义的取值范围是()A. B. C. D.9.如图,y1,y2分别表示燃油汽车和纯电动汽车行驶路程S(单位:千米)与所需费用y(单位:元)的关系,已知纯电动汽车每千米所需的费用比燃油汽车每千米所需费用少0.54元,设纯电动汽车每千米所需费用为x元,可列方程为()A. B.C. D.10.如下是一种电子记分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.11.如图,在平面直角坐标系中,直线y=-3x+3与坐标轴分别交于A,B两点,以线段AB为边,在第一象限内作正方形ABCD,直线y=3x-2与y轴交于点F,与线段AB交于点E,将正方形ABCD沿x轴负半轴方向平移a个单位长度,使点D落在直线EF上.有下列结论:①△ABO的面积为3;②点C的坐标是(4,1);③点E到x轴距离是;④a=1.其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个12.函数y=中,自变量x的取值范围是()A.x>﹣2 B.x≥﹣2 C.x≠2 D.x≤﹣2二、填空题(每题4分,共24分)13.如果正数m的平方根为x+1和x-3,则m的值是_____14.计算:____________.15.计算:=______.16.如图,已知矩形的对角线相交于点,过点任作一条直线分别交,于,,若,,则阴影部分的面积是______.17.直线y=3x+2沿y轴向下平移4个单位,则平移后直线与y轴的交点坐标为_______.18.在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是.三、解答题(共78分)19.(8分)某中学形展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.(1)根据图示填写下表:班级平均数(分)中位数(分)众数(分)九(1)85九(2)85100(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差.20.(8分)把一个足球垂直水平地面向上踢,时间为(秒)时该足球距离地面的高度(米)适用公式经过多少秒后足球回到地面?经过多少秒时足球距离地面的高度为米?21.(8分)已知:x=3+1,22.(10分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:车型目的地A村(元/辆)B村(元/辆)大货车800900小货车400600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.23.(10分)材料一:如图1,由课本91页例2画函数y=﹣6x与y=﹣6x+5可知,直线y=﹣6x+5可以由直线y=﹣6x向上平移5个单位长度得到由此我们得到正确的结论一:在直线L1:y=K1x+b1与直线L2:y=K2x+b2中,如果K1=K2且b1≠b2,那么L1∥L2,反过来,也成立.材料二:如图2,由课本92页例3画函数y=2x﹣1与y=﹣0.5x+1可知,利用所学知识一定能证出这两条直线是互相垂直的.由此我们得到正确的结论二:在直线L1:y=k1x+b1与L2:y=k2x+b2中,如果k1·k2=-1那么L1⊥L2,反过来,也成立应用举例已知直线y=﹣x+5与直线y=kx+2互相垂直,则﹣k=﹣1.所以k=6解决问题(1)请写出一条直线解析式______,使它与直线y=x﹣3平行.(2)如图3,点A坐标为(﹣1,0),点P是直线y=﹣3x+2上一动点,当点P运动到何位置时,线段PA的长度最小?并求出此时点P的坐标.24.(10分)某区举行“庆祝改革开放40周年”征文比赛,已知每篇参赛征文成绩记分,组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表:征文比赛成绩频数分布表分数段频数频率380.380.32100.1合计1请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中的值是;(2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.25.(12分)如图,在平行四边形ABCD中,点F在AD上,且AF=AB,AE平分∠BAD交BC于点E,连接EF,BF,与AE交于点O.(1)求证:四边形ABEF是菱形;(2)若四边形ABEF的周长为40,BF=10,求AE的长及四边形ABEF的面积.26.在一只不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,然后把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)上表中的a=;(2)“摸到白球”的概率的估计值是(精确到0.1)(3)试估算口袋中黑、白两种颜色的球各有多少个?

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据一次函数图像与系数的关系以及正比例函数图像与系数的关系逐一对各选项进行判断,然后进一步得出答案即可.【详解】A:由一次函数图像可知:m>0,n>0,则mn>0,由正比例函数图像可得:mn<0,互相矛盾,故该选项错误;B:由一次函数图像可知:m>0,n<0,则此时mn<0,由正比例函数图像可得:mn>0,互相矛盾,故该选项错误;C:由一次函数图像可知:m﹤0,n>0,则此时mn﹤0,由正比例函数图像可得:mn<0,故该选项正确;D:由一次函数图像可知:m﹤0,n﹥0,则此时mn<0,由正比例函数图像可得:mn>0,互相矛盾,故该选项错误;故选:C.【点睛】本题主要考查了正比例函数图像以及一次函数图像与系数的关系,熟练掌握相关概念是解题关键.2、D【解析】

把方程整理成,然后因式分解求解即可.【详解】解:把方程整理成即∴或解得:,故选:D.【点睛】此题考查了一元二次方程的解法,一元二次方程的解法有:直接开平方法;分解因式法;公式法;配方法,本题涉及的解法有分解因式法,此方法的步骤为:把方程右边通过移项化为0,方程左边利用提公因式法,式子相乘法,公式法以及分组分解法分解因式,然后根据两数积为0,两数中至少有一个为0,转化为两个一元一次方程,进而得到原方程的解.3、A【解析】

原计划每天绿化x米,则实际每天绿化(x+10)米,根据结果提前2天完成即可列出方程.【详解】原计划每天绿化x米,则实际每天绿化(x+10)米,由题意得,,故选A.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.4、A【解析】

根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之相对应,据此即可确定哪一个是函数图象.【详解】解:①②③的图象都满足对于x的每一个取值,y都有唯一确定的值与之相对应,故①②③的图象是函数,④的图象不满足满足对于x的每一个取值,y都有唯一确定的值与之相对应,故D不能表示函数.故选:A.【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.5、C【解析】

方程移项后,方程两边除以2变形得到结果,即可判定.【详解】方程移项得:2x2﹣3x=1,方程两边除以2得:x2-32x=12,配方得:x2-32x+9故选C.【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握配方法是解答本题的关键.6、B【解析】

根据轴对称图形与中心对称图形的概念求解.【详解】解:第1个图形,是轴对称图形,不是中心对称图形,故错误;第2个图形,不是轴对称图形,是中心对称图形,故正确;第3个图形,不是轴对称图形,是中心对称图形,故正确;第4个图形,是轴对称图形,也是中心对称图形,故错误;故选B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7、B【解析】

根据题意和一次函数的性质,当y随x的增大而减小时,3k+6<0,解之即可求解.【详解】∵一次函数y=(3k+6)x-k,函数值y随x的增大而减小,

∴3k+6<0,

解得:k<-2,

故选:B.【点睛】本题考查一次函数图象与系数的关系,解答本题的关键是明确题意,掌握一次函数的增减性.8、A【解析】

解:根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须.故选A.9、C【解析】

设纯电动汽车每千米所需费用为x元,则燃油汽车每千米所需费用为(x+0.54)元,根据路程=总费用÷每千米所需费用结合路程相等,即可得出关于x的分式方程,此题得解.【详解】解:设纯电动汽车每千米所需费用为x元,则燃油汽车每千米所需费用为(x+0.54)元,根据题意得:.故选:C.【点睛】本题考查了由实际问题抽象出分式方程以及函数的图象,找准等量关系,正确列出分式方程是解题的关键.10、C【解析】

根据轴对称和中心对称图形的概念可判别.【详解】(A)既不是轴对称也不是中心对称;(B)是轴对称但不是中心对称;(C)是轴对称和中心对称;(D)是中心对称但不是轴对称故选:C11、B【解析】

①由直线解析式y=-3x+3求出AO=3,BO=1,即可求出△ABO的面积;②证明△BAO≌△CBN即可得到结论;③联立方程组,求出交点坐标即可得到结论;④如图作CN⊥OB于N,DM⊥OA于M,利用三角形全等,求出点D坐标即可解决问题.【详解】如图,作CN⊥OB于N,DM⊥OA于M,CN与DM交于点F,①∵直线y=-3x+3与x轴、y轴分别交于B、A两点,∴点A(0,3),点B(1,0),∴AO=3,BO=1,∴△ABO的面积=,故①错误;②∵四边形ABCD是正方形,∴AB=AD=DC=BC,∠ABC=90°,∵∠BAO+∠ABO=90°,∠ABO+∠CBN=90°,∴∠BAO=∠CBN,在△BAO和△CBN中,,∴△BAO≌△CBN,∴BN=AO=3,CN=BO=1,∴ON=BO+BN=1+3=4,∴点C的坐标是(4,1),故②正确;③联立方程组,解得,y=,即点E到x轴的距离是,故③正确;④由②得DF=AM=BO=1,CF=DM=AO=3,∴点F(4,4),D(3,4),∵将正方形ABCD沿x轴负方向平移a个单位长度,使点D恰好落在直线y=3x-2上,∴把y=4代入y=3x-2得,x=2,∴a=3-2=1,∴正方形沿x轴负方向平移a个单位长度后,点D恰好落在直线y=3x-2上时,a=1,故④正确.故选B.【点评】本题考查反比例函数与一次函数的交点、正方形的性质、全等三角形的判定和性质等知识,解题的关键是添加辅助线构造全等三角形,属于中考常考题型.12、B【解析】依题意,得x+2≥0,解得:x≥-2.故选B.二、填空题(每题4分,共24分)13、4【解析】

根据数m的平方根是x+1和x-3,可知x+1和x-3互为相反数,据此即可列方程求得x的值,然后根据平方根的定义求得m的值.【详解】由题可得(x+1)+(x-3)=0,解得x=1,则m=(x+1)2=22=4.所以m的值是4.【点睛】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.14、﹣1【解析】

首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.【详解】原式=﹣8+1+1+3=﹣1.故答案为:﹣1.【点睛】本题考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.正确化简各数是解题的关键.15、.【解析】解:=;故答案为:.点睛:此题考查了二次根式的乘法,掌握二次根式的运算法则:乘法法则是本题的关键.16、1【解析】

首先结合矩形的性质证明△AOE≌△COF,得△AOE、△COF的面积相等,从而将阴影部分的面积转化为△AOD的面积.【详解】∵四边形ABCD是矩形,∴OA=OC,AD∥BC,∴∠AEO=∠CFO.在△AOE和△COF中,∵,∴△AOE≌△COF,∴S△AOE=S△COF,∴S阴影=S△COF+S△EOD=S△AOE+S△EOD=S△AOD.∵S△AODBC•AD=1,∴S阴影=1.故答案为:1.【点睛】本题考查了矩形的性质以及全等三角形的判定和性质,能够根据三角形全等,从而将阴影部分的面积转化为矩形面积的,是解决问题的关键.17、(0,-2)【解析】y=3x+2沿y轴向下平移4个单位y=3x+2-4=3x-2,令x=0,y=-2,所以(0,-2).故交点坐标(0,-2).18、1.【解析】

试题分析:因为菱形的对角线垂直平分,对角线AC,BD的长分别是6和8,所以一半长是3和4,所以菱形的边长是5,所以周长是5×4=1.故答案为:1.考点:菱形的性质.三、解答题(共78分)19、(1)九(1)的平均数为85,众数为85,九(2)班的中位数是80;(2)九(1)班成绩好些,分析见解析;(3)=70,=100【解析】

(1)先根据条形统计图得出每个班5名选手的复赛成绩,然后平均数按照公式,中位数和众数按照概念即可得出答案;(2)对比平均数和中位数,平均数和中位数大的成绩较好;(3)按照方差的计算公式计算即可.【详解】解:(1)由图可知九(1)班5名选手的复赛成绩为:75、80、85、85、100,九(2)班5名选手的复赛成绩为:70、100、100、75、80,∴九(1)的平均数为(75+80+85+85+100)÷5=85,九(1)的众数为85,把九(2)的成绩按从小到大的顺序排列为:70、75、80、100、100,∴九(2)班的中位数是80;(2)九(1)班成绩好些.因为两个班平均分相同,但九(1)班的中位数高,所以九(1)班成绩好些.(3)==70==100【点睛】本题主要考查数据的统计与分析,掌握平均数,中位数,众数和方差是解题的关键.20、(1)秒后足球回到地面;(2)经过秒或秒足球距地面的高度为米.【解析】

(1)令,解方程即可得出答案;(2)令,解方程即可.【详解】解:令,解得:(舍),,∴秒后足球回到地面;令,解得:.即经过秒或秒,足球距地面的高度为米.【点睛】本题考查的知识点是二次函数的实际应用,根据题意分别令为不同的值解答本题.21、x-y【解析】解:x2-2xy+y2又∵x+y=23,x-y=2∴原式=22322、(1)大货车用8辆,小货车用7辆;(2)y=100x+1.(3)见解析.【解析】

(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A村的大货车为x辆,则前往B村的大货车为(8-x)辆,前往A村的小货车为(10-x)辆,前往B村的小货车为[7-(10-x)]辆,根据表格所给运费,求出y与x的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【详解】(1)设大货车用x辆,小货车用y辆,根据题意得:解得:.∴大货车用8辆,小货车用7辆.(2)y=800x+900(8-x)+400(10-x)+600[7-(10-x)]=100x+1.(3≤x≤8,且x为整数).(3)由题意得:12x+8(10-x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,∵y=100x+1,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+1=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.23、(1)y=x;(2)当线段PA的长度最小时,点P的坐标为.【解析】

(1)由两直线平行可得出k1=k2=1、b1≠b2=﹣3,取b1=0即可得出结论;(2)过点A作AP⊥直线y=﹣3x+2于点P,此时线段PA的长度最小,由两直线平行可设直线PA的解析式为y=x+b,由点A的坐标利用待定系数法可求出直线PA的解析式,联立两直线解析式成方程组,再通过解方程组即可求出:当线段PA的长度最小时,点P的坐标.【详解】.解:(1)∵两直线平行,∴k1=k2=1,b1≠b2=﹣3,∴该直线可以为y=x.故答案为y=x.(2)过点A作AP⊥直线y=﹣3x+2于点P,此时线段PA的长度最小,如图所示.∵直线PA与直线y=﹣3x+2垂直,∴设直线PA的解析式为y=x+b.∵点A(﹣1,0)在直线PA上,∴×(﹣1)+b=0,解得:b=,∴直线PA的解析式为y=x+.联立两直线解析式成方程组,得:,解得:.∴当线段PA的长度最小时,点P的坐标为(,).【点睛】本题考查待定系数法求一次函数解析式、垂线段以及两直线平行或相交,解题的关键是:(1)根据材料一找出与已知直线平行的直线;(2)利用点到直线之间垂直线段最短找出点P的位置.24、(1)0.2;(2)见解析;(3)300篇.【解析】

(1)依据,即可得到的值;(2)求得各分数段的频数,即可补全征文比赛成绩频数分布直方图;(3)利用80分以上(含80分)的征文所占的比例,即可得到全市获得一等奖征文的篇数.【详解】解:(1),故答案为:0.2;(2),,,补全征文比赛成绩频数分布直方图:(3)全市获得一等奖征文的篇数为:(篇.【点睛】本题考查了频数(率分布直方图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论