




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列各式由左到右的变形中,属于分解因式的是()A. B.C. D.2.当分式有意义时,则x的取值范围是()A.x≠2 B.x≠-2 C.x≠ D.x≠-3.以下列各组数为三角形的边长,能构成直角三角形的是()A.1,2,3 B.1,1, C.2,4,5 D.6,7,84.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是黄金分割比(黄金分割比0.618)著名的“断臂维纳斯”便是如此.此外最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是黄金分割比.若某人满足上述两个黄金分割比例,且腿长为103cm,头顶至脖子下端的长度为25cm,则其身高可能是()A.165cm B.170cm C.175cm D.180cm5.如图,在四边形ABCD中,AD∥BC,∠BCD=90°,将四边形ABCD沿AB方向平移得到四边形A'B'C'D',BC与C'D'相交于点E,若BC=8,CE=3,C'E=2,则阴影部分的面积为()A.12+2 B.13 C.2+6 D.266.反比例函数经过点(1,),则的值为()A.3 B. C. D.7.如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动.在运动过程中,点B到原点的最大距离是(
)A.6 B.2 C.2 D.2+28.点(1,m)为直线上一点,则OA的长度为A.1 B. C. D.9.下列计算过程中,结果是2的是A. B. C. D.10.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2 B.3 C. D.二、填空题(每小题3分,共24分)11.观察以下等式:第1个等式:第2个等式:=1第3个等式:=1第4个等式:=1…按照以下规律,写出你猜出的第n个等式:______(用含n的等式表示).12.在菱形ABCD中,∠C=∠EDF=60°,AB=1,现将∠EDF绕点D任意旋转,分别交边AB、BC于点E、F(不与菱形的顶点重合),连接EF,则△BEF的周长最小值是_____.13.如图,已知▱ABCD中,AB=4,BC=6,BC边上的高AE=2,则▱ABCD的面积是______,DC边上的高AF的长是______.14.若与最简二次根式能合并成一项,则a=______.15.已知y是x的一次函数下表列出了部分对应值,则m=_______16.二次根式有意义的条件是__________.17.小明用四根长度相同的木条制作了能够活动的菱形学具,他先把活动学具成为图1所示菱形,并测得∠B=60°,接着活动学具成为图2所示正方形,并测得正方形的对角线AC=2acm,则图1中对角线AC的长为18.已知一次函数y=ax+b的图象如图所示,根据图中信息请写出不等式ax+b≥2的解集为___________.三、解答题(共66分)19.(10分)某学校打算招聘英语教师。对应聘者进行了听、说、读、写的英语水平测试,其中甲、乙两名应聘者的成绩(百分制)如下表所示。(1)如果学校想招聘说、读能力较强的英语教师,听、说、读、写成绩按照2:4:3:1的比确定,若在甲、乙两人中录取一人,请计算这两名应聘者的平均成绩(百分制)。从他们的成绩看,应该录取谁?(2)学校按照(1)中的成绩计算方法,将所有应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最后左边一组分数为:)。①参加该校本次招聘英语教师的应聘者共有______________人(直接写出答案即可)。②学校决定由高分到低分录用3名教师,请判断甲、乙两人能否被录用?并说明理由。20.(6分)已知点E是正方形ABCD内一点,连接AE,CE.(1)如图1,连接,过点作于点,若,,四边形的面积为.①证明:;②求线段的长.(2)如图2,若,,,求线段,的长.21.(6分)如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,同时点Q从点B开始沿BC向点C以2cm/s的速度移动.当一个点到达终点时另一点也随之停止运动,运动时间为x秒(x>0).(1)求几秒后,PQ的长度等于5cm.(2)运动过程中,△PQB的面积能否等于8cm2?并说明理由.22.(8分)随着新能源汽车推广力度加大,产业快速发展,越来越多的消费者接受并购买新能源汽车。我市某品牌新能源汽车经销商1月至3月份统计,该品牌汽车1月份销售150辆,3月份销售216辆.(1)求该品牌新能源汽车销售量的月均增长率;(2)若该品牌新能源汽车的进价为52000元,售价为58000元,则该经销商1月至3月份共盈利多少元?23.(8分)某校为了了解学生对语文、数学、英语、物理四科的喜爱程度(每人只选一科),特对八年级某班进行了调查,并绘制成如下频数和频率统计表和扇形统计图:科目频数频率语文0.5数学12英语6物理0.2(1)求出这次调查的总人数;(2)求出表中的值;(3)若该校八年级有学生1000人,请你算出喜爱英语的人数,并发表你的看法.24.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.25.(10分)仔细阅读下面例题,解答问题:例题:已知二次三项式有一个因式是,求另一个因式以及m的值.解:设另一个因式为,得则.解得:,另一个因式为,m的值为问题:仿照以上方法解答下面问题:已知二次三项式有一个因式是,求另一个因式以及k的值.26.(10分)如图,一次函数y=x+6的图象与x轴、y轴分别交于A、B两点,点C与点A关于y轴对称.动点P、Q分别在线段AC、AB上(点P与点A、C不重合),且满足∠BPQ=∠BAO.(1)求点A、B的坐标及线段BC的长度;(2)当点P在什么位置时,△APQ≌△CBP,说明理由;(3)当△PQB为等腰三角形时,求点P的坐标.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据题中“属于分解因式的是”可知,本题考查多项式的因式分解的判断,根据因式分解的概念,运用因式分解是把多项式分解成若干个整式相乘的形式,进行分析判断.【详解】A.属于整式乘法的变形.B.不符合因式分解概念中若干个整式相乘的形式.C.运用提取公因式法,把多项式分解成了5x与(2x-1)两个整式相乘的形式.D.不符合因式分解概念中若干个整式相乘的形式.故应选C【点睛】本题解题关键:理解因式分解的概念是把多项式分解成若干个整式相乘的形式,注意的是相乘的形式.2、B【解析】
根据分母不为零列式求解即可.【详解】分式中分母不能为0,所以,3x+6≠0,解得:x≠-2,故选B.【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:①分式无意义⇔分母为零;②分式有意义⇔分母不为零;③分式值为零⇔分子为零且分母不为零.3、B【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A、12+22≠32,故不是直角三角形,故此选项错误;B、12+12=()2,故是直角三角形,故此选项正确;C、22+42≠52,故不是直角三角形,故此选项错误;D、62+72≠82,故不是直角三角形,故此选项错误.故选B.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4、B【解析】
以腿长103cm视为从肚脐至足底的高度,求出身高下限;)以头顶到脖子下端长度25cm视为头顶至咽喉长度求出身高上限,由此确定身高的范围即可得到答案.【详解】(1)以腿长103cm视为从肚脐至足底的高度,求出身高下限:,(2)以头顶到脖子下端长度25cm视为头顶至咽喉长度求出身高上限:①咽喉至肚脐:cm,②肚脐至足底:cm,∴身高上限为:25+40+105=170cm,∴身高范围为:,故选:B.【点睛】此题考查黄金分割,正确理解各段之间的比例关系,确定身高的上下限,即可得到答案.5、B【解析】
利用平移的性质得到B′C′=BC=8,BC∥B′C′,CD∥C′D′,S梯形ABCD=S梯形A′B′C′D′,然后根据S阴影部分=S梯形BB′C′E进行计算.【详解】解:∵四边形ABCD沿AB方向平移得到四边形A'B'C'D',∴B′C′=BC=8,BC∥B′C′,CD∥C′D′,S梯形ABCD=S梯形A′B′C′D′,∴C′D′⊥BE,∴S阴影部分=S梯形BB′C′E=(8﹣3+8)×2=1.故选:B.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.6、B【解析】
此题只需将点的坐标代入反比例函数解析式即可确定k的值.【详解】把已知点的坐标代入解析式可得,k=1×(-1)=-1.故选:B.【点睛】本题主要考查了用待定系数法求反比例函数的解析式,.7、D【解析】试题分析:作AC的中点D,连接OD、DB,∵OB≤OD+BD,∴当O、D、B三点共线时OB取得最大值,∵D是AC中点,∴OD=AC=2,∵BD=,OD=AC=2,∴点B到原点O的最大距离为2+2,故选D.考点:1.二次函数的应用;2.两点间的距离;3.勾股定理的应用.8、C【解析】
根据题意可以求得点A的坐标,从而可以求得OA的长.【详解】【∵点A(1,m)为直线y=2x-1上一点,∴m=2×1-1,解得,m=1,∴点A的坐标为(1,1),故故选:C.【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质和勾股定理解答.9、C【解析】
根据负指数幂运算法则、0次幂的运算法则、相反数的意义、绝对值的性质逐项进行判断即可得.【详解】解:A、原式,故不符合题意;B、原式,故不符合题意;C、原式=2,故符合题意;D、原式,故不符合题意,故选C.【点睛】本题考查了负指数幂、0次幂、相反数、绝对值等,熟练掌握各运算的运算法则以及相关的性质是解题的关键.10、D【解析】分析:连接EF交AC于点M,由菱形的性质可得FM=EM,EF⊥AC;利用“AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理和解直角三角形的性质求解即可.详解:如图,连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用“AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=10,且tan∠BAC=;在Rt△AME中,AM=
AC=5
,tan∠BAC=,可得EM=
;在Rt△AME中,由勾股定理求得AE=
=1.2.故选:B.点睛:此题主要考查了菱形的性质,矩形的性质,勾股定理,全等三角形的判定与性质及锐角三角函数的知识,综合运用这些知识是解题关键.二、填空题(每小题3分,共24分)11、++×=1【解析】
观察前四个等式可得出第n个等式的前两项为及,对比前四个等式即可写出第n个等式,此题得解.【详解】解:观察前四个等式,可得出:第n个等式的前两项为及,∴第n个等式为故答案为:++×=1【点睛】本题考查规律型中的数字的变化类,观察给定等式,找出第n的等式是解题的关键.12、1+【解析】
连接BD,根据菱形的性质得到AD=AB=BC=CD,∠C=∠A=60°,由等边三角形的判定定理即可得到结论;△ABD和△CBD都是等边三角形,于是得到∠EBD=∠DBC=∠C=60°,BD=CD证得∠EDB=∠FDC,根据全等三角形的性质得到DE=DF,BE=CF,证明△DEF是等边三角形,根据等边三角形的性质得到DF=EF,得到BF+BE=BF+CF=1,得到当DF⊥BC时,求得,△BEF的周长取得最小值.【详解】连接BD,∵四边形ABCD是菱形,∴AD=AB=BC=CD,∠C=∠A=60°,∴△ABD和△CBD都是等边三角形;∴∠EBD=∠DBC=∠C=60°,BD=CD,∵∠EDF=60°,∴∠EDB=∠FDC,在△BDE与△CDF中,∴△BDE≌△CDF,∴DE=DF,BE=CF,∴△DEF是等边三角形;∴EF=DF,∴BF+BE=BF+CF=1,当DF⊥BC时,此时△DEF的周长取得最小值,∴△DEF的周长的最小值为:故答案为:【点睛】考查菱形的性质,等边三角形的判定与性质,全等三角形的判定与性质,解直角三角形等,掌握菱形的性质是解题的关键.13、12,1.【解析】
用BC×AE可求平行四边形的面积,再借助面积12=CD×AF可求AF.【详解】解:根据平行四边形的面积=底×高,可得BC×AE=6×2=12;则CD×AF=12,即4×AF=12,所以AF=1.故答案为12,1.【点睛】本题主要考查了平行四边形的性质,面积法求解平行四边形的高或某边长是解决此类问题常用的方法.14、2【解析】
根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】解:=2,由最简二次根式与能合并成一项,得a-1=1.解得a=2.故答案为:2.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.15、1【解析】
设一次函数解析式为y=kx+b,把两组对应值分别代入得到k、b的方程组,然后解方程组求出k、b的值,则可确定一次函数解析式,再计算自变量为0时的函数值即可.【详解】解:设一次函数解析式为y=kx+b,把x=1,y=3;x=2,y=5代入得,解得所以一次函数的解析式为:y=2x+1当x=0时,y=2x+1=1,即m=1.故答案为1.【点睛】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的直代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.16、【解析】
根据被开方式大于零列式求解即可.【详解】由题意得x-3>0,∴x>3.故答案为:x>3.【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.17、a【解析】
如图1,2中,连接AC.在图2中,理由勾股定理求出BC,在图1中,只要证明△ABC是等边三角形即可解决问题.【详解】如图1,2中,连接AC.在图2中,∵四边形ABCD是正方形,∴AB=BC,∠B=90°,∵AC=40°,∴AB=BC=a,在图1中,∵∠B=60°,BA=BC,∴△ABC是等边三角形,∴AC=BC=a.故答案为:a.【点睛】此题考查菱形的性质,正方形的性质,解题关键在于作辅助线.18、x≥1.【解析】试题分析:根据题意得当x≥1时,ax+b≥2,即不等式ax+b≥2的解集为x≥1.故答案为x≥1.考点:一次函数与一元一次不等式.三、解答题(共66分)19、(1)录取乙;(2)①30,②乙一定能被录用;甲不一定能被录用,见解析.【解析】
(1)根据加权平均数的定义与性质即可求解判断;(2)①根据直方图即可求解;②根据直方图判断甲乙所在的分段,即可判断.【详解】解:(1)由题意得,(分)(分)∵∴应该录取乙。(2)①30②由频数分布直方图可知成绩最高一组分数段中有1人,而分,所以乙是第一名,一定被录取;在一组有5人,其中有2人被录用,分,可确定甲在本组中,但不能确定甲在本组中排第几名,所以甲不一定能被录用。【点睛】此题主要考查统计调查的应用,解题的关键是熟知加权平均数的求解与性质.20、(1)①证明见解析;②AE=;(2),.【解析】
(1)①由正方形性质可得:AB=BC,∠ABC=90°,再证明△ABF≌△BCE(AAS)即可;②设AF=BE=m,由四边形ABCE的面积=△ABE面积+△BCE面积,可列方程求出AF,然后利用勾股定理可得AE的长;(2)过A作AF⊥CE于F,连接AC,由,可得,再由△AEF、△ABC均为等腰直角三角形及勾股定理即可求得AE和CE的长.【详解】解:(1)①证明:∵ABCD是正方形,∴AB=BC,∠ABC=90°∴∠ABF+∠CBE=90°∵AF⊥BE∴∠AFB=∠BEC=90°∴∠ABF+∠BAF=90°∴∠BAF=∠CBE∴△ABF≌△BCE(AAS)∴AF=BE;②∵△ABF≌△BCE(AAS)∴BF=CE=2,设AF=BE=m,∵四边形ABCE的面积为.∴S△BCE+S△ABE=,即×2m+m2=,解得:m1=5,m2=−7(舍),∴AF=BE=5,EF=3∴AE=;(2)如图2,过A作AF⊥CE于F,连接AC,则∠F=90°,∵∠AEC=135°∴∠AEF=180°−∠AEC=45°=∠EAF,∴△AEF是等腰直角三角形,∴AF=EF=AE,∵,即:,∴EF+CE=,即CF=,∵△ABC是等腰直角三角形,AB=4∴AC=,∴,∴AE=AF=4,EF=AF=,∴CE=CF−EF=.【点睛】本题考查了正方形性质,等腰直角三角形性质,勾股定理等知识点,解题关键是添加辅助线构造直角三角形,利用勾股定理建立方程求解.21、(1)1秒后PQ的长度等于5cm;(1)△PQB的面积不能等于8cm1.【解析】
(1)根据PQ=5,利用勾股定理BP1+BQ1=PQ1,求出即可;(1)通过判定得到的方程的根的判别式即可判定能否达到8cm1.【详解】解:(1)根据题意,得BP=(5-x),BQ=1x.当PQ=5时,在Rt△PBQ中,BP1+BQ1=PQ1,∴(5-x)1+(1x)1=51,5x1-10x=0,5x(x-1)=0,x1=0(舍去),x1=1,答:1秒后PQ的长度等于5cm.(1)设经过x秒以后,△PBQ面积为8,×(5-x)×1x=8.整理得x1-5x+8=0,Δ=15-31=-7<0,∴△PQB的面积不能等于8cm1.【点睛】此题主要考查了一元二次方程的应用,解题的关键是找到等量关系,列出方程并解答.22、(1)该品牌新能源汽车销售量的月均增长率为;(2)盈利3276000元.【解析】
(1)设该品牌电动自行车销售量的月均增长率为x.等量关系为:1月份的销售量×(1+增长率)2=3月份的销售量,把相关数值代入求解即可.(2)根据(1)求出增长率后,再计算出二月份的销量,即可得到答案.【详解】(1)设该品牌新能源汽车销售量的月均增长率x,根据题意列方程解得,(舍去)(2)答:(1)该品牌新能源汽车销售量的月均增长率为;(2)共盈利3276000元.【点睛】此题考查一元二次方程的应用,解题关键在于根据题意列出方程.23、(1)60人;(2)a=30,b=0.2,c=0.1,d=12;(3)喜爱英语的人数为100人,看法见解析.【解析】
(1)用喜爱英语科目的人数除以其所占比例;(2)根据频数=频率×总人数求解可得;(3)用八年级总人数乘以样本中喜爱英语科目人数所占比例,计算即可.【详解】解:(1)这次调查的总人数为:6÷(36°÷360°)=60(人);(2)a=60×0.5=30(人);b=12÷60=0.2;c=6÷60=0.1;d=0.2×60=12(人);(3)喜爱英语的人数为1000×0.1=100(人),看法:由扇形统计图知喜爱语文的人数占总人数的一半,是四个学科中喜爱人数最多的科目.【点睛】本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计图或统计表中得到必要的信息是解决问题的关键.用到的知识点为:频数=频率×总人数.24、(1)见解析;(2)见解析;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO/IEC/IEEE 8802-1AS:2021/AMD1:2025 EN Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Part 1A
- 【正版授权】 IEC 63522-24:2025 EN-FR Electrical relays - Tests and measurements - Part 24: Load transfer
- 2025年心理健康教育与心理辅导能力测试试题及答案
- 2025年心理测评师考试卷及答案
- 2025年商法知识竞赛考试试卷及答案
- 2025年国际法与国内法考试题及答案
- 2025年法务会计相关考试题及答案
- 2025年城市规划师执业资格考试卷及答案
- 2025年计算机科学与技术职业资格考试试卷及答案
- 2025年建筑师职业认证考试试卷及答案
- 临床三基培训
- 2024年湖北省高考政治卷第18题说题+-2025届高考政治二轮复习
- 2024安徽省安全员C证考试(专职安全员)题库及答案
- 2022年首都师范大学计算机科学与技术专业《数据结构与算法》科目期末试卷A(有答案)
- 福建省福州教育学院附属中学2025届高考数学四模试卷含解析
- 造价咨询预算评审服务投标方案(技术方案)
- 门诊合作协议合同范本(2篇)
- 洁净室空调净化系统验证方案(通过BSI和华光审核)
- 路灯安装施工组织设计方案
- 主动脉夹层完整版课件
- 超声考试题+参考答案
评论
0/150
提交评论