




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若的两根分别是与5,则多项式可以分解为()A. B.C. D.2.在中,,是对角线上不同的两点,下列条件中,不能得出四边形一定为平行四边形的是()A. B. C. D.3.1的平方根是()A.1 B.-1 C.±1 D.04.如图,在长方形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F,连结EF,若AB=6,BC=4,则FD的长为()A.2 B.4 C. D.25.关于x的分式方程有增根,则a的值为()A.﹣3 B.﹣5 C.0 D.26.矩形的对角线一定()A.互相垂直平分且相等 B.互相平分且相等C.互相垂直且相等 D.互相垂直平分7.如图(1),四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD的面积为S,S关于t的函数图象如图(2)所示,当P运动到BC中点时,△APD的面积为()A.4 B.5 C.6 D.78.根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.没有实数根9.下列变形是因式分解的是()A.x(x+1)=x2+x B.m2n+2n=n(m+2)C.x2+x+1=x(x+1)+1 D.x2+2x﹣3=(x﹣1)(x+3)10.通过估算,估计的大小应在()A.7~8之间 B.8.0~8.5之间C.8.5~9.0之间 D.9~10之间二、填空题(每小题3分,共24分)11.若二次根式有意义,则实数m的取值范围是_________.12.化简:(+2)(﹣2)=________.13.已知:关于的方程有一个根是2,则________,另一个根是________.14.如图,利用函数图象可知方程组的解为______.15.一组数据3,5,a,4,3的平均数是4,这组数据的方差为______.16.如图,正方形ABCD中,,点E、F分别在边AD和边BC上,且,动点P、Q分别从A、C两点同时出发,点P自A→F→B方向运动,点Q自C→D→E→C方向运动若点P、Q的运动速度分别为1cm/s,3cm/s,设运动时间为,当A、C、P、Q四点为顶点的四边形是平行四边形时则t=________________17.已知关于x的不等式组x-a≥04-18.函数中,自变量x的取值范围是___________.三、解答题(共66分)19.(10分)《九章算术》“勾股”章的问题::“今有二人同所立,甲行率七,乙行率三,乙东行,甲南行十步而斜东北与乙会.问甲、乙各行几何?”大意是说:如图,甲乙二人从A处同时出发,甲的速度与乙的速度之比为7:3,乙一直向东走,甲先向南走十步到达C处,后沿北偏东某方向走了一段距离后与乙在B处相遇,这时,甲乙各走了多远?20.(6分)“立定跳远”是我市初中毕业生体育测试项目之一.测试时,记录下学生立定跳远的成绩,然后按照评分标准转化为相应的分数,满分10分.其中男生立定跳远的评分标准如下:注:成绩栏里的每个范围,含最低值,不含最高值.成绩(米)
…
1.80~1.86
1.86~1.94
1.94~2.02
2.02~2.18
2.18~2.34
2.34~
得分(分)
…
5
6
7
8
9
10
某校九年级有480名男生参加立定跳远测试,现从中随机抽取10名男生测试成绩(单位:分)如下:1.962.382.562.042.342.172.602.261.872.32请完成下列问题:(1)求这10名男生立定跳远成绩的极差和平均数;(2)求这10名男生立定跳远得分的中位数和众数;(3)如果将9分(含9分)以上定为“优秀”,请你估计这480名男生中得优秀的人数.21.(6分)某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算候选人的综合成绩(满分为100分).他们的各项成绩如下表所示:修造人笔试成绩/分面试成绩/分甲9088乙8492丙x90丁8886(1)直接写出这四名候选人面试成绩的中位数;(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.22.(8分)如图,ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.(1)求∠APB的度数;(2)如果AD=5cm,AP=8cm,求△APB的周长.23.(8分)如图,网格中的图形是由五个小正方形组成的,根据下列要求画图(涂上阴影).(1)在图①中,添加一块小正方形,使之成为轴对称图形,且只有一条对称轴;(画一种情况即可)(2)在图②中,添加一块小正方形,使之成为中心对称图形,但不是轴对称图形;(3)在图③中,添加一块小正方形,使之成为既是中心对称图形又是轴对称图形.24.(8分)如图,反比例函数y=的图象与一次函数y=mx+b的图象交于两点A(1,3),B(n,-1).(1)求反比例函数与一次函数的函数关系式;(2)根据图象,直接回答:当x取何值时,一次函数的值大于反比例函数的值;(3)连接AO、BO,求△ABO的面积;(4)在y轴上存在点P,使△AOP为等腰三角形,请直接写出点P的坐标.25.(10分)昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?26.(10分)如果关于的一元二次方程有两个实数根,且其中一个根为另一个根的倍,那么称这样的方程为“倍根方程”,例如,一元二次方程的两个根是和,则方程就是“倍根方程”.(1)若一元二次方程是“倍根方程”,则=.(2)若关于的一元二次方程是“倍根方程”,则,,之间的关系为.(3)若是“倍根方程”,求代数式的值.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
先提取公因式2,再根据已知分解即可.【详解】∵x2-2px+3q=0的两根分别是-3与5,
∴2x2-4px+6q=2(x2-2px+3p)
=2(x+3)(x-5),
故选:C.【点睛】考查了解一元二次方程和分解因式,注意:能够根据方程的解分解因式是解此题的关键.2、D【解析】
数形结合,依题意画出图形,可通过选项所给条件证三角形全等,再根据平行四边形的判定定理判断即可.【详解】解:如图所示,A.四边形ABCD是平行四边形又(SAS)四边形BEDF是平行四边形,故A选项正确.B.四边形ABCD是平行四边形又(ASA)四边形BEDF是平行四边形,故B选项正确.C.四边形ABCD是平行四边形(AAS),四边形BEDF是平行四边形,故C选项正确.D.四边形ABCD是平行四边形,,再加上并不能证明三角形全等,也不能通过平行四边形的判定定理直接证明,故D选项错误.故答案为:D【点睛】本题考查了平行四边形的性质与判定,灵活运用选项所给条件,结合平行四边形的性质证三角形全等是解题的关键.3、C【解析】
根据平方根的定义,求数a的平方根,也就是求一个数x,使得x=a,则x就是a的平方根,由此即可解决问题.【详解】∵(±1)=1,∴1的平方根是±1.故选:C.【点睛】此题考查平方根,解题关键在于掌握其定义4、B【解析】试题分析:∵E是AD的中点,∴AE=DE,∵△ABE沿BE折叠后得到△GBE,∴AE=EG,AB=BG,∴ED=EG,∵在矩形ABCD中,∴∠A=∠D=90°,∴∠EGF=90°,在Rt△EDF和Rt△EGF中,∵ED=EG,EF=EF,∴Rt△EDF≌Rt△EGF(HL),∴DF=FG,设DF=x,则BF=6+x,CF=6﹣x,在Rt△BCF中,,解得x=3.故选B.考点:3.翻折变换(折叠问题);3.综合题.5、B【解析】
分式方程去分母转化为整式方程,由分式方程有增根,确定出x的值,代入整式方程计算即可求出a的值.【详解】分式方程去分母得:x−2=a,由分式方程有增根,得到x+3=0,即x=−3,把x=−3代入整式方程得:a=−5,故选:B.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.6、B【解析】
根据矩形的性质对矩形的对角线进行判断即可.【详解】解:矩形的对角线一定互相平分且相等,故选:B.【点睛】此题考查矩形的性质,关键是根据矩形的对角线一定互相平分且相等解答.7、B【解析】
根据函数图象和三角形面积得出AB+BC=6,CD=4,AD=4,AB=1,当P运动到BC中点时,梯形ABCD的中位线也是△APD的高,求出梯形ABCD的中位线长,再代入三角形面积公式即可得出结果.【详解】解:根据题意得:四边形ABCD是梯形,AB+BC=6,CD=10-6=4,∵AD×CD=8,∴AD=4,又∵AD×AB=2,∴AB=1,当P运动到BC中点时,梯形ABCD的中位线也是△APD的高,∵梯形ABCD的中位线长=(AB+CD)=,∴△PAD的面积故选B.【点睛】本题考查了动点问题的函数图象、三角形面积公式、梯形中位线定理等知识;看懂函数图象是解决问题的关键.8、A【解析】原方程变形为:x²-2x=0,∵△=(-2)²-4×1×0=4>0,∴原方程有两个不相等的实数根.故选A.9、D【解析】
根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】A、是整式的乘法,故A错误;B、等式不成立,故B错误;C、没把一个多项式转化成几个整式乘积的形式,故C错误;D、把一个多项式转化成几个整式乘积的形式,故D正确;故选:D.【点睛】此题考查因式分解的意义,解题关键在于掌握其定义10、C【解析】
先找到所求的无理数在哪两个和它接近的有理数之间,然后判断出所求的无理数的范围.【详解】解:∵64<1<81,∴89,排除A和D,又∵8.52=72.25<1.故选C.二、填空题(每小题3分,共24分)11、m≤3【解析】
由二次根式的定义可得被开方数是非负数,即可得答案.【详解】解:由题意得:解得:,故答案为:.【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.12、1【解析】根据平方差公式,(+2)(﹣2)=()2﹣22=5﹣4=1.故答案为:1.13、2,1.【解析】
设方程x2-3x+a=0的另外一个根为x,根据根与系数的关系,即可解答.【详解】解:设方程的另外一个根为,则,,解得:,,故答案为:2,1.【点睛】本题主要考查了根与系数的关系及一元二次方程的解,属于基础题,关键掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=-p,x1x2=q.14、【解析】
观察函数的图象y=2x与x+ky=3相交于点(1,2),从而求解;【详解】观察图象可知,y=2x与x+ky=3相交于点(1,2),可求出方方程组的解为,故答案为:【点睛】此题主要考查一次函数与二元一次方程组,关键是能根据函数图象的交点解方程组.15、0.3.【解析】试题分析:∵3,5,a,4,3的平均数是4,∴(3+5+a+4+3)÷5=4,解得:a=5,则这组数据的方差S3=[(3﹣4)3+(5﹣4)3+(5﹣4)3+(4﹣4)3+(3﹣4)3]=0.3,故答案为0.3.考点:3.方差;3.算术平均数.16、3s或6s【解析】
根据两点速度和运动路径可知,点Q在EC上、点P在AF上或和点P在BC上时、点Q在AD上时,A、C、P、Q四点为顶点的四边形是平行四边形.根据平行四边形性质构造方程即可.【详解】由P、Q速度和运动方向可知,当Q运动EC上,P在AF上运动时,若EQ=FP,A、C、P、Q四点为顶点的四边形是平行四边形∴3t-7=5-t∴t=3当P、Q分别在BC、AD上时若QD=BP,形A、C、P、Q四点为顶点的四边形是平行四边形此时Q点已经完成第一周∴4-[3(t-4)-4]=t-5+1∴t=6故答案为:3s或6s.【点睛】本题考查了正方形的性质,平行四边形的判定和性质,动点问题的分类讨论和三角形全等有关知识.解答时注意分析两个动点的相对位置关系.17、-3<a≤-1【解析】
先表示出不等式组的解集,再由整数解的个数,可得b的取值范围.【详解】由x-a≥04-x>1,
则其整数解为:-1,-1,0,1,1,
∴-3<a≤-1.
故答案为-3<a≤-1.【点睛】本题考查解一元一次不等式组和一元一次不等式组的整数解等知识点,关键是能根据不等式组的解集和已知得出a的取值范围.18、且.【解析】
根据二次根式的性质以及分式的意义,分别得出关于的关系式,然后进一步加以计算求解即可.【详解】根据二次根式的性质以及分式的意义可得:,且,∴且,故答案为:且.【点睛】本题主要考查了二次根式的性质与分式的性质,熟练掌握相关概念是解题关键.三、解答题(共66分)19、甲行24.1步,乙行10.1步.【解析】分析:甲乙同时出发二者速度比是7:3,设相遇时甲行走了7t,乙行走了3t根据二者的路程关系可列方程求解.详解:设经x秒二人在B处相遇,这时乙共行AB=3x,甲共行AC+BC=7x,∵AC=10,∴BC=7x-10,又∵∠A=90°,∴BC2=AC2+AB2,∴(7x-10)2=102+(3x)2,解得:x1=0(舍去),x2=3.1,∴AB=3x=10.1,AC+BC=7x=24.1.答:甲行24.1步,乙行10.1步.点睛:本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形.20、(1)0.73,2.25;(2)2,10;(3)1.【解析】
(1)根据极差、平均数的定义求解;(2)对照表格得到10名男生立定跳远得分,然后根据中位线、众数的概念解答;(3)用样本根据总体.【详解】解:(1)10名男生“立定跳远”成绩的极差是:2.60-1.87=0.73(米)10名男生“立定跳远”成绩的平均数是:(1.26+2.38+2.56+2.04+2.34+2.17+2.60+2.26+1.87+2.32)=2.25(米);(2)抽查的10名男生的立定跳远得分依次是:7,10,10,8,10,8,10,2,6,2.∴10名男生立定跳远得分的中位数是2分,众数是10分;(3)∵抽查的10名男生中得分2分(含2分)以上有6人,
∴有480×=1;∴估计该校480名男生中得到优秀的人数是1人.【点睛】本题考查了极差,平均数,中位线,众数的概念,极差是一组数据中最大的数与最小的数的差.众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同.21、(1)这四名候选人面试成绩的中位数为89(分);(2)表中x的值为86;(3)以综合成绩排序确定所要招聘的前两名的人选是甲和丙.【解析】
(1)根据中位数的概念计算;(2)根据题意列出方程,解方程即可;(3)根据加权平均数的计算公式分别求出余三名候选人的综合成绩,比较即可.【详解】(1)这四名候选人面试成绩的中位数为:=89(分);(2)由题意得,x×60%+90×40%=87.6解得,x=86,答:表中x的值为86;(3)甲候选人的综合成绩为:90×60%+88×40%=89.2(分),乙候选人的综合成绩为:84×60%+92×40%=87.2(分),丁候选人的综合成绩为:88×60%+86×40%=87.2(分),∴以综合成绩排序确定所要招聘的前两名的人选是甲和丙.【点睛】本题考查的是中位线、加权平均数,掌握中位数的概念、加权平均数的计算公式是解题的关键.22、(1)∠APB=90°;(2)△APB的周长是24cm.【解析】【分析】(1)根据平行四边形性质得出AD∥CB,AB∥CD,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB中求出∠APB即可;(2)求出AD=DP=5,BC=PC=5,求出DC=10=AB,即可求出答案.【详解】(1)∵四边形是平行四边形,∴∥,∥,,∴,又∵和分别平分和,∴,∴;(2)∵平分,∥,∴,∴,同理:,∴,在中,,∴,∴△的周长.【点睛】本题考查了平行四边形的性质,等腰三角形的判定与性质等,熟练掌握平行四边形的性质是解题的关键.23、(1)如图①所示,见解析;(2)如图②所示,见解析;(3)如图③所示,见解析.【解析】
利用轴对称图形和中心对称图形的定义,以及两者之间的区别解题画图即可【详解】(1)如图①所示:(2)如图②所示:(3)如图③所示:【点睛】本题考查轴对称图形和中心对称图形的定义,基础知识扎实是解题关键24、(1)y=,y=x+2;(2)-1<x<0或x>1;(1)3;(3)P(0,-
)或P(0,)或P(0,6)或P(0,).【解析】
(1)利用待定系数法求得一次函数与反比例函数的解析式;
(2)根据图象,当自变量取相同的值时,函数图象对应的点在上边的函数值大,据此即可确定;
(1)设一次函数交y轴于D,根据S△ABO=S△DBO+S△DAO即可求解;
(3)求得OA的长度,分O是顶角的顶点,和A是顶角顶点,以及OA是底边三种情况进行讨论即可求解.【详解】解:(1)∵A(1,1)在反比例函数图象上,∴k=1,
∵B(n,-1)在y=的图象上,
∴n=-1.
∵A(1,1),B(-1,-1)在一次函数y=mx+b图象上,
∴,
解得m=1,b=2.
∴两函数关系式分别是:y=和y=x+2.
(2)由图象得:当-1<x<0或x>1时,一次函数的值大于反比例函数的值;
(1)设一次函数y=x+2交y轴于D,则D(0,2),则OD=2,
∵A(1,1),B(-1,-1)
∴S△DBO=×1×2=1,S△DAO=×1×2=1
∴S△ABO=S△DBO+S△DAO=3.
(3)OA==,O是△AOP顶角的顶点时,OP=OA,则P(0,-
)或P(0,),A是△AOP顶角的顶点时,由图象得,
P(0,6),OA是底边,P是△AOP顶角的顶点时,设P(0,x),分别过A、P作AN⊥x轴于N,PM⊥AN
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 并购交易结构设计-洞察及研究
- 厦门疏散人群管理办法
- 数字化领导力研究述评与未来发展趋势探讨
- 人工智能发展路径中的自主研发机器人技术突破
- 内控文件归类管理办法
- 新时期文学作品中的父子关系探析
- 制定管理办法技巧包括
- 《宏观经济分析:货币供应、价格与汇率的实证研究》
- 全面质量控制流程与程序手册
- 信息经济学理论框架及其在数字经济中的应用研究
- 2025年调解员职业技能考试试卷及答案
- 喷粉技术质量协议书
- 2025年自考有效沟通技巧试题及答案
- 商场物业外包合同协议
- 2025民宿租赁合同标准范本
- 云仓公司规章管理制度
- 2025年小学数学新教材培训
- 某单位推行6S管理细则
- 学校物业管理与师生满意度分析总结
- 《基于Arduino UNO R3平台的具备自主循迹和自主避障功能的智能小车设计》11000字(论文)
- 航天工程质量管理规定
评论
0/150
提交评论