版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ExperimentalInvestigationofBricksUnderUniaxialTensileTestingBSTRACTSofteningisagradualdecreaseofmechanicalresistanceresultingfromacontinuousincreaseofdeformationimposedonamaterialspecimenorstructure.Itisasalientfeatureofquasi-brittlematerialslikeclaybrick,mortar,ceramics,stoneorconcretewhichfailduetoaprocessofprogressiveInternalcrackgrowth.Suchmechanicalbehaviouriscommonlyattributedtotheheterogeneityofthematerial,duetothepresenceofdifferentphasesandmaterialdefects,suchasflawsandvoids.Fortensilefailurethisphenomenonhasbeenwellidentifiedforconcretebutveryfewresultsexistsforclaybrick..Inthepresentpaper,theresultsofanextensivesetoftestscarriedoutatUniversityofMinhoandincludingthreedifferenttypesofbackunderniaxialtensionwillbepresented.Bothtensilestrengthandfractureenergyarequantified,withrecommendationsfortheadoptionofpracticalvalues.INTRODUCTIONThetensilebehaviourofconcreteandotherquasi-brittlematerialsthathaveadisorderedInternalstructure,suchasbrick.canbewelldescribedbythecohesivecrackmodelproposedinitiallybyHILLERBORG[1].Thismodelhasbeenwidelyusedasthefundamentalmodelthatdescribesthenon-linearfracturemechanicsofquasi-brittlematerials,e.g.[2,3].Accordingtothismodelandduetocrackinglocalization,whichisacharacteristicoffractureprocessInquasi-brittlematerials,thetensilebehaviourIscharacterizedbytwoconstitutivelawsassociatedwithdifferentzonesofthematerialduringtheloadingprocess.seeFigure1.Theelastic-plasticstress-strainrelationshipofFigurelaisvaliduntilthepeakloadisreached.ItisnotedthatbeforethepeakInelasticbehaviouroccursduetomicro-crackingandtheenergydissipatedinthisprocessisusuallyneglectedforthecalculationofthefractureenergy.Thestress-crackopeningdisplacementrelationshipofFigurelbdescribesthestrainsofteningbehaviourinthefractureprocesszoneafterthepeak.Thecohesivestress-openingdisplacementdiagramIscharacterizedbythegradualdecreaseofstressfromftmaximumvalue,tozero,correspondingtotheIncreaseofthedistancebetweenthetwoedgesofthecrackfromzerotothecriticalopening,u,ThesofteningdiagramassumesafundamentalroleInthedescriptionofthefractureprocessandIscharacterizedbythetensilestrength,fr,andthefractureenergy,Gr,whichIsgivenbytheareaunderthesofteningdiagram,seeFigure1b.Thecriticalcrackopening,ue,canbereplacedbytheductilityindexd,[4]givenastheratioGrlfr,whichrepresentsthefractureenergynormalizedbythetensilestrength.Thisparameterallowsthecharacterizationofthebrittlenessofthematerialandisdirectlyrelatedtotheshapeofthedescendingportionofthestress-deformationdiagram.Thereareseveralexperimentalmethodsthathavebeenusedtomeasurethefractureproperties(tensilestrength,fractureenergyandductilityIndex)thatallowthedefinitionoftheconstitutivelawsofthematerial,namelydirecttensiletests,indirecttensiletestssuchasthethree-pointloadtest,andtheBraziliansplittingtest.Althoughtensilefailureresultsfromaloadcombinationandamultiplicity,offactors.meaningthatdirecttensionisnottheonlycauseoftensilecracking,adirecttensiletestseemstobethemoslappropriatetesttocharacterizethebasicfailuremechanism(modeI)ofquasi-brittlematerials.ThistestIsdefinedasthereferencemethodtofollow(5jbeingadoptedinthisworkfarthecharacterizationofthetensilebehaviourofbricks.Differentissuesrelatedtothespecimensandthetestprocedureshavebeendiscussedinthepast,namelythetestingequipment,thecontrolmethod,thelocationoftheLinearVariableDisplacementTransducers(LVDTs),thealignmentofthespecimenand,especially,theattachmentofthespecimenstothesteelplatens.TherelevanceofthelatterIsaddressedInFigure2[6].ThebehaviourinFigure2a(rotatingplatensorhinges)Isjustifiedbytherotationofthespecimenduringtheloadingoperation,wherethecrackproceedsfromonesideofthespecimentotheotherside.InthecaseofFigure2busingfixed(non-rotating)platens,abendingmomentisintroducedandmultiplecrackswillappear.Thisresultsinaslightlylargertensilestrengthandahighervalueofenergydissipated(fractureenergy).Finally,ItisnotedthatalthoughthetensilestrengthandfractureenergyareconsideredIntrinsicpropertiesofthematerial,itIswellknownthatfracturepropertiesaresizeandscaledependent[6,7].Tensilefractureparametersofmasonryconstituents,namelyunitsandthemortar-unitinterface,arekeyparametersforadvancednumericalmodellingofmasonryandforadeeperunderstandingofthebehaviourofmasonrystructures.inmepresentpaper,anexperimentalprogrammeusingthreetypesofclaybrickIsdiscussedwiththeobjectiveofincreasingthedataavailableintheliterature.TESTSET-UPANDSPECIMENSTensiletestswereperformedwithsolidbricksproducedbyValedaGandara,Portugal(S),hollowbricksproducedbyJ.MonteiroeFilhos,Portugal(HP),andhollowbricksproducedbySuceram,Spain(HS).Allbricksareextrudedandtheyweretestedinverticalorthickness(V)andinhorizontalorlength(H)directionresultinginsixserieswiththefollowingnotation:SV,SH;HPV,HPH;HSV,HSH.Table1givesthedimensionsofthebricksandthefreewaterabsorption.Thenetcompressivestrengthofthebricks,alongtheextrusiondirectionwas78N/mm282N/mm2and58N/mm2,respectivelyforS.HPandHS.Hereitisnotedthatthesevaluesaremerelyindicative,asthefirsttwovalueswerefromindependenttestsbydifferentresearchersandinsufficientInformationaboutthetestingproceduresisavailable,see(8,9].Thethirdvalueofcompressivestrengthwasprovidedbythemanufacturer.Itisnotedthat:(a)bricksHPareextrudedwiththeholesparalleltothelargerdimensionandbricksHSareextrudedwiththeholesparalleltothesmallerdimension;(b)bricksHPandHShavesmallgroovesintheuppersurface(sideoppositetothefacingside)inordertoincreaseadhesionbetweentheunitandthebackingmortar,seeFlgure3.TestingequipmentandappliedmeasuringdevicesThetestswereperformedinthelaboratoryoftheCivilEngineeringDepartmentofUniversityofMinho,usingaCS7400-Sshearingtestingmachine.Thismachinehastwoindependenthydraulicactuators,positionedinverticalandhorizontaldirections.Ithasaloadcellconnectedtotheverticalactuatorwithamaximumcapacityof25kN,beingparticularlysuitedtosmallspecimens(maximumsizeof90x150x150mm).Theadoptionofaconstantcrosssectionforthespecimensleadstouncertaintyaboutthelocationofthemicro-cracks.Thisrepresentstheusualsupplementarydifficultyforthecontrolmethodofthistypeoftest.SincethecontrolsystemallowsonlyoneLinearVariableDisplacementTransducer(LVDT)asdisplacementcontrol,itwasdecidedtointroduce,bymeansadiamondsawingmachine,twolateralnotcheswithadepthof8mmandathicknessof3mmatmidheightofthespecimeninordertolocalizethefracturesurface.Withthenotches,thestressanddeformationdistributionisnolongeruniform,withstressandstraingradientsoccurringverylocalizednearthenotchtips.Sincethree-dimensionalnpn-uniformcrackopeningcanoccurontensiletests[10],thetensiletestcontrolusingtheaverageofthedeformationsregisteredonthefourcornersofthespecimenisthemostappropriateprocedure,seeFigure4.However,theavailableequipmentcanonlycontrolonedisplacementtransducer(LVDT),locatedatanotchedside.Thetransducershaveameasurebaseof1mmwithalinearityof0.17%ofthefullstroke.Adeformationrateof0.5um/swasusedinthetests.Theforceappliedwasmeasuredonaloadcellof25kNmaximumloadbearingcapacity,withanaccuracyof0.03%.Afterpreparationofthespecimens'ends,glueadhesionconditionswereenhancedbymakingaseriesofsuperficialslotswithasaw.Then,thespecimenswerecarefullyfixedtothesteelplatensusinganepoxyresin(DEVCOM)insuchawaythattheplatenswerekeptperfectlyparallel.Here,ItIsnotedthatthesteelplatensarefixed(non-rotating),meaningthatloadeccentricityIsnotspecimens.Theonlysourceofanissueforpnsmadceccentricityisparallelismbetweenthesteelplatenswhichwethelackof,uldinduceabendingmomentInthespecimenintheclampingoperation.SpecimendimensionsTakingintoconsiderationthebrickdimensionsandthetestset-up,40x40x70mmSbrickspecimenswereextractedasshownInFigure5.HPandHSbricksarehollowand,therefore,thespecimensextractedfromthebricksmustberepresentativeofthebrickshell,achannelorUspecimens,andthebrickweb1specimens,seeFigure6.Here,itisnotedthattheusageofchannelspecimensinquestionablebecausealoadeccentricityisintroducedbythefactthetopandbottomflangesarefullygluedtothesteelspecimens.Nevertheless,becausetheendplatensarefullyfixed,theeccentricityisverylow.alinearelasticFEMcalculationIndicatesthatthenormalizedloadeccentricity(measuredbyeccentricity/webwidth)isonly0.03.RESULTSFromtheforce-elongationrelationshipobtainedinthetensiletests,thefollowingparameterswereevaluated:tensilestrength,fractureenergy,andresidualstressatultimatescanreading.ThenotchesreducetheYoung'smodulusofthebrick(Eb)byabout20%-40%[11].AsthemeasureofEbisquestionable,itisnotshownhere.Figure7illustratestheprocedureadoptedforevaluatingthefractureenergy,G,.Inthecohesivecrackmodeladdressedabove,thecrackopeninguisequaltothetotalelongation,subtractedfromtheelasticdeformation(u,,=vxlmaes/E0)andtheirreversibledeformationu;,,,whichaccountsforinelasticeffectsduringmaterialunloading,inthevicinityofthemacro-crack.Here,/meansisthedistancebetweenthemeasuringpointsoftheLVDT.Themaximumforcerecordedbytheloadcellwasdividedbytheeffectiveareaofeachspecimen(notchedcross-section),inordertodeterminethetensilestrength.Thefractureenergyisidentifiedwiththeworkthatiscarriedouttocompletetheseparationofthetwofacesofthemacro-crack,perunitofarea.Itisnotpossibletodeterminetheexactcrackopeningforwhichthestressvaluetransferredbecomeszero,duetolongtailexhibitedbythesofteningbranchofthestress-openingcrack.Forthecalculationofthefractureenergy,thevalueofthefractureenergyIsusuallycalculatedastheresultofthesumoftwoquantities,onequantitybeingmeasuredandtheotherquantityestimated.ThemeasuredvalueoffractureenergyGf,meansisdirectlycomputedastheareaunderthestress-crackopeningdiagramuptoanominalvalueofthepeakstrength(ortheultimatevalue).TheestimatedvalueGi,&iscalculatedastheareaunderthelinearcurveobtainedbylinear[12]ornon-linear[11]adjustmentoftheoriginaldiagrambelowthecut-off.Here,takingintoaccounttheforce-elongationdiagramsandtheinternalfrictionofthetestingequipment,thefractureenergywassimplyevaluateduptoadeflectionof60pmoruptoadeflectioncorrespondingtoaforceof200N(ifthedeflectionislessthan60pm).Forthetestsabortedbeforetheselimitconditions,theenergydissipatedwasnotevaluated.SspecimensThestress-elongationrelationshipsforspecimensSVFigure8.ForspecimensSV(intheextrusiondirection),theaveragevaluesWere3.48N/mm2(42%)forthetensilestrengthand0.0575N/mm(39%)forthefractureenergy.Theductilityindex,againgivenbytheratioGf/ft,was0.0165mm.ThevaluesinsidebracketsIndicatethevaluesofthecoefficients(CV)forthesixteensuccessfultests.ForspecimensSH(perpendiclartotheextrusiondirection),theaveragevalueswere2.96N/mm(63%)forthetensilestrengthand0.0508N/mm(41%)forthefractureenergy.Thevaluesinsidebracketsindicatethevaluesofthecoefficientsofvariationforthefourteensuccessfultests.Theductilityindexwas0.0172mm..Thetensilestrengthintheextrusiondirectionwas4.5%ofthecompressivestrength.Thetensilestrengthintheextrusiondirectionwas18%higherandthefractureenergyis15%higherthanthevaluesobtainedintheperpendiculardirection,duetothealignmentofthemicrostructure.Theductilitywassimilarinbothdirections.Therefore,bricktypeSexhibitedonlymoderateanisotropy.Alltheresultsexhibitveryalargescatter,thoughthescatterwashigherinthedirectionperpendiculartotheextrusiondirection.Thereasonforthisseemstobeflaws,micro-cracksandinclusionsintheburntclay.Itiswellknownthatthefractureprocessisathree-dimensionalprocess[10]andFigure9aillustratesthetypicalsuperficialcrackingpatternsofbrickspecimens.ItisclearthatbothstraightandpronouncedS-shapedcracksappear,meaningthatalargescattermustbefound.Inallcases,thecrackingsurfacewastortuous,goingaroundtheaggregateandconcentratingintheinterfacesbetweentheaggregateandthematrix.Finally,theresultsofthefractureenergyvs.thetensilestrengthwereplottedinFigure10,whereitcanbeseenthattherewasaweakcorrelationbetweenfractureenergyandtensilestrength,althoughacleartrendforfractureenergytoincreasewithanincreaseoftensilestrengthwasfound.CUNGLUSIONThepresentpaperaimstodiscussthetensilebehaviourofbricksandprovidedataforadvancednumericalsimulations.Forthispurpose,threedifferentproducerswereselectedincludingsolidandhollowbricksfromPortugalandSpain.Directtensiletestsonaservo-controlledmachinewerecarriedoutinordertoobtainthetensilestrength,thefractureenergyandtheshapeofthestress-elongationdiagram.Allbricksweretestedintwoorthogonaldirections,namelyalongandnormaltothedirectionofextrusion.Forthehollowbricks,twodifferenttypesofspecimenwereextractedsothattheshellandthewebcouldbecharacterized.Duetothepresenceofvoidsandinternalfiringcracks,thecompletestress-elongationdiagramcouldnotbeobtainedinseveralofthespecimens.Theresultsindicatealargescatterforthetensilestrengthandfractureenergy.Thefolldwingconclusionswithrespecttothetensilestrengtharepossible:(a)brickspossessanisotropywithhigherstrengthinthedirectionparalleltoextrusion;(b)inhollowbricks,thetensilestrengthoftheshellishigherthanthatoftheweb.Moreover,theaverageresultsinthebrickspecimensarefairlyconstanttakingintoconsiderationthatthreedifferentbrickmanufacturerswereinvolved.Therefore,forpracticalpurposesthefollowingrecommendationsseempossible:(a)thetensilestrengthofbrickisaround5%ofthecompressivestrength(withvaluesfoundaround4N/mm2inthedirectionparalleltoextrusionand3N/mm2inthedirectionperpendiculartoextrusion);(b)theductilityindexisaround0.018mm(meaningthatthefractureenergyfoundisaround0.08and0.06N/mm,respectivelyparallelandperpendiculartotheextrusiondirection).Thevaluesfoundapplysolelyforsolidbricksandmustbereducedforhollowbricks,accordingtothevolumeofholes.ACKNOWLEDGMENTSThepresentworkwaspartiallysupportedbyprojectGROW-1999-70420"Industrialisedsolutionsforconstructionofreinforcedbrickmasonryshellroofs"fundedbyEuropeanCommission.
单轴拉伸试验下砖的实验研究摘要转化是来自在一个材料样本和结构逐步减少机械阻力的过程,这是粘土砖、砂浆、石材等准脆性材料具体到一个渐进过程的显著特点。其破坏的原因是内部裂纹的增长。由于缺陷和空洞的存在,这些特性通常材料的异质性。在混凝土中,拉伸破坏现象已得到确定,但是这种破坏很少存在粘土砖中。在目前的论文中,米尼奥大学进行了一系列拉伸试验,改试验还包括三个不同类型砖的单轴拉伸。这三种试验保过抗拉强度、断裂能量的量化和实用价值采纳的建议。引言混凝土和其它准脆性材料懒神行为有一个无序的内部结构材料,如砖。改象可以很好地描述最初有希勒勒提出的去裂纹模型,改模型已经作为最基本的模型用于解释准脆性材料的非线性断裂。依据这个模型,准脆性材料的一个特点就是开裂的位置不同,这是拉伸材料在不同部位的拉伸特点,见图1。直到达到高峰负荷,弹塑性应力应变关系图是有效的。据悉,非弹性行为的高峰值发生是由于微裂过程中消耗的能量通常被忽略。应力开裂张拉位移关系图1b介绍了在断裂过程区的应变后峰转化行为。凝聚力应力张开位移座高峰压力逐渐减少直到为零,与其相对应的裂纹的两个边之间距离增加从零到关键的开裂点。软化图在描述假设的基础性作用断裂过程抗拉强度特点的断裂能量,即由该地区给予的软化图,简图16.关键性裂纹张拉可以代替延性指数D;其代表了能源正常化的抗性强度。此参数允许脆性材料的表征和和降部分的形状直接关系到应力变形图。已经有几个用于测量断裂性能的实验方法对材料直接拉伸实验和间接拉伸实验本构关系,这意味着直接拉伸不是破坏的唯一原因。直接拉伸实验似乎是最适合的测试表征准脆性材料的实效机理。这个测试定义为可参考的方法。样本组织和测试程序已经在过去发表过,即测试设备,控制方法,线性可变位移传感器的安放位置。后者在图2中心理问题的相关性,在图2的案例中,用固定压板,弯矩和多个裂缝会出现。这样的结果产生于一个稍大的抗拉强度和更高的能量值消散。最后,其指出虽然抗拉强度和断裂在属性材料内考虑,但是,众所周知,砌体成分断裂依赖于大小和规模,即单位砂浆设备接口一个实验程序使用三种类型砖在文献中体现目标数据的增加。拉伸断裂参数的砖石成分,即单位和砂浆设备接口,是关键参数先进的砖石结构的数值模拟并为砖石结构的特性有更深入的了解。我在本论文中,实验程序使用三种类型的粘土砖讨论,文献提供的目标数据的增加的。测试设置的标本由河谷达拉进行的实心砖的拉伸实验,左右的砖都是挤压的,他们测试是直的,厚的,水平的和长度方向六大系列。表1给出了砖的尺寸和自由水吸收。砖的净抗压强度在沿挤出方向分别是78N/mm2,82N/mm2和5882N/mm2。在这里需指出:这些指标仅仅是指标性的,正如前两个值是从相互独立的不同研究者和不充足信息的实验程序得到的,第三个抗拉强度值是制造商提供的。值得注意的是:HP砖平行较大的尺寸,HP和HS砖在表面上有小槽以增加附着力之间的单位和支持结构。图1一般的凝聚力模型:(a)弹性应力应变图;(b)应力裂纹张开位移图图2边界条件的影响:(a)针截边界;(b)夹紧边界:(c)软化形状的影响图3为测试选择的砖:(a)砖瓦;(b)惠普砖;(c)恒生转表1砖标本系列:尺寸和吸收检测设备和应用测量设备在米尼奥大学土木工程系实验室进行的实验,使用了CS7400-S剪测试机器,这个机器有两个独立的液压执行机构,垂直位置和水平位置。其
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗述职报告
- 2024年度青海省高校教师资格证之高等教育心理学考前自测题及答案
- ICU护理风险识别与干预
- 2024年度原料供应与破碎石加工服务协议
- 2024年度终止健身中心教练服务合同的协议
- 2024年度墙体拆毁劳务分包服务协议
- 2024年度墙体拆移劳务分包协议书
- 初中足球社团活动记录
- 中医药对慢性病管理的效果评估与激励
- 产房紧急呼救系统管理制度
- 高中化学校本课程
- DL-T-1846-2018变电站机器人巡检系统验收规范
- 第二单元第2课《信息搜索与遴选》教案 2023-2024学年苏教版信息科技七年级上册
- 重大事故隐患判定标准与相关事故案例培训课件(建筑)
- 医院公共卫生管理制度
- 雷雨教案学情分析与反思
- 厂房设施维护保养计划
- 2024年普法学法知识竞赛题库及参考答案【完整版】
- MOOC 珠宝玉石的鉴别与评价-中国地质大学(武汉) 中国大学慕课答案
- 初中化学知识点总结归纳
- 湖北省武汉市东湖高新区2023-2024学年七年级下学期期中数学试题(含答案)
评论
0/150
提交评论