福州市2020年5月高三综合质量数学理科试题含答案_第1页
福州市2020年5月高三综合质量数学理科试题含答案_第2页
福州市2020年5月高三综合质量数学理科试题含答案_第3页
福州市2020年5月高三综合质量数学理科试题含答案_第4页
福州市2020年5月高三综合质量数学理科试题含答案_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

R精品资料R市测(卷间120分;分150分)本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷1至页第Ⅱ卷3至4页,满分分考注:

答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.第Ⅰ卷每小题选出答案后铅把答题卡上对应题目的答案标号涂黑需改动用橡皮擦干净后再选涂其他答案号Ⅱ卷用毫的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.考试结束,监考员将试题卷和答题卡一并收回.第Ⅰ卷一、选择题:本大题共12小,每小题5分,共分.在每小题给出四个选项中,只有一项是符合题目要求的.、已知全集为,集合MNx|x23},MI()(A){1,1,2}(B{1,2}(C{4}()、复数满(1|,复数共轭复数在复平面内的对应点位于(A)第一象限(B)第二象限(C第三象限()第四象限π、函数f(x)sin(xA)x处得最小值,则π(A)f(x)是函数(B)f()偶函数3ππ(C)f(x)是函数(Df(x)是函3rr4、ABC,AB,,AB(A)

(B

(C)2

(D)、已知某工程在很大程度上受当地年降水量的影响,施工期间的年降水量X单位:mm)对工期延误天数的响及相应的概率P如表所示:降水量X工期延误天数

„200300…3001530概率

0.3在降水量X至是00条件下,工期延误不超过5天概率为(A)

(B

(C)

(D)0.50,、若y足约束条件y…且标函数得最大值的点有无数个,则z

的最小

…0,值等于

1精品资料1(A)

(B

32(C)

()

、执行右面的程序框图,若输入n值为4则输出的结果为(A)(C)

(B)21()、的展开式中,

的系数为(A)(C)

(B)60()120、正项等比数列{a}满

a128,下列结正确的是(A)*,a

B

*

(C)*,S

()N*,

、双曲线E:

xa的、右焦点分别为FF,PEa左支上一点,F,线与x

y

a

相切,则离心率为(A)

(B

(C)

53

(D)

2311、一个三棱锥的三视图如图所示,则该三棱锥的体积等于(A)2

(B

43

(C)

43

()

、设R,数f(x))

.若存在使

1f()成立,则(A)

15

(B

(C)

35

(D)

第Ⅱ卷本卷包括必考题和选考题两部分.第13)题~)为考题,每个试题考生都必须做答.第(22~第()题为选考,考生根据要求做.二、填空题:本大题题,每小题5分,共分.把答案填在答题卡相应位置、知函数f(x)

xx剟x0.

若g

.、所有棱长均为的四棱锥的外接球的表面积等于.

、抛物线C:y

精品资料x的线与x轴于点M,焦点F作倾斜角为60线C于,点,则AMB=.、数列{}的项为.知a,S

,S________三、解答题:解答应写出文字说、证明过程或演算步骤.小题满分12分)tanA2cABC的角C所对的边分别为,,知tan

.(Ⅰ)求;(Ⅱ)若BC边的中线AM2,高线3,的积.小题满分12分)为了研究某学科成绩是否与学生性别有关,采用分层抽样的方法,从高三年级抽取了名生和名生的该学科成绩,得到如下所示男生成绩的频率分布直方图和女生成绩的茎叶图,规定分以上为优(含80分.(Ⅰ)请根据图示,将2联表补充完整;优分

非优分

总计男生女生总计50(ii)据此列联表判,能否在犯错误概率不超过10%前提下认“学科成绩与性别有?(Ⅱ)将频率视作概率,从高三年级该学科成绩中任意抽取3名生的成绩,求至少2名生的成绩为优分的概率.附:P

k

k

K

n()()()()(b)

.小题满分12分)如图所示,四棱锥ABCD的面是梯,且AB//CD,CDAD.(Ⅰ)求证:CE面

AB平面PADEPB点,(Ⅱ)若CE3,,求直线与面PDC所角大小.

小题满分12分)

精品资料在平面直角坐标系中已知点B坐标分别为相交于点,且它们的斜率之积是

14

.记点轨迹为.(Ⅰ)求的程;(Ⅱ知线AP,分别交直线l:于M,迹在点P处切线与线段MN交点,求

MQ

的值.小题满分12分)已知a,数f(x的图象与轴切.(Ⅰ)求f()的调区间;(Ⅱ)当x时f)(x,实数m的值围.请考生在第()三题中任一题做答,如果多做,则按所做的第一题计分,做答时请写清题号.小题满分10分)选修4-1几何证明选讲如图所示,ABC内于圆OD是BAC的点,∠BAC平分线分别交和圆O于EF.(Ⅰ)求证:是外接圆的切线;

D

A(Ⅱ)若,DB

2

的值.

BE

CF小题满分10分)选修4-4坐标系与参数方程2在直角坐标系xOy中曲C的数方程为(参数为点,轴半轴y2sin为极轴,并取相同的单位长度建立极坐标系.(Ⅰ)写出C的坐标方程;1,(Ⅱ)设曲线:经伸缩变换2C交于,两,求.

π后得到曲线,线(3

)别与和小题满分10分)选修4-5不等式选讲已知不等式xx的解集为{}.(Ⅰ)求的值;(Ⅱ)设关于的程x(t)解,求实数t的.t福州市普通高中毕业班综合质量检测

精品资料评分说明:.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则..对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分..解答右端所注分数,表示考生正确做到这一步应得的累加分数..只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知和基本运算.每小题分,满分分.(1)A(2D(3B()(5D()(7)C()D(9C()(11)A()B二、填空题:本大题考查基础知和基本运算.每小题分,满分分.(13(14π()4)198三、解答题:本大题共小,共70分解答应写出文字说明、证明过程或演算步骤.(17)本小题主要考查正弦定理、余弦定理、三角形面公式及三角恒等变换等基础知识,考查运算求解能力,考查化归与转化思想、函数与方程思想等.满分分.解:(Ⅰ)因为1

tanAccosB2sinC,以1tanbBB

,······················2sin(AB)2sin即,AsinB因为sin()sinC,sinB,所以cos,·················································································4分π又因为Aπ),以.·····························································(Ⅱ)由M是BC中,得AM(AB),rr即AM(ABAB),所以,①·····································································1由SAHABA,2得

32

3,bca,····························································9分又根据余弦定理,有

,③··············································10分联立①②③,得()

bc,解得bc.1所以△的面积sin3.·············································12分2(18本小题主要考查频率分布直方图、茎叶图、次立重复试验独立性检验等基础知识,考查运算求解能力、数据处理能力、应用意识,考查必然与或然思想、化归与转化思想.满分1分.解:(Ⅰ)根据图示,将×2列表补充完整下:

精品资料男生女生

优分

非优分

总计总计203050·····································································································假设H:学科成绩与性别无关,n(K的测(ac)()(b)3020因为3.125,以能在犯错误概率不超过10%的提下认为该学科成绩与性别有关.··············································································································(Ⅱ)由于有较大的把握认为该学科成绩与性别有关,因此需要将男女生成绩的优分频率f0.4作概率.···············································································设从高三年级中任意抽取名生的该学科成绩中,优分人数为,X服二项分布(3,0.4),·······························································································所求概率P(2)(

0.4

0.6

···································································································12分(19本小题主要考查空间直线与直线线与平面的位置关系及直线与平面所成的角等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想等.满分2分(Ⅰ)证明:取的中点F,结DF,如图所示.因为PD,所以DFAP.···························································1分因为面PAD,DF平面,所以DF.又因为API,所以DF面.········································································因为点是点,AB所以EF//AB,且EF.······························································又因为//CD,CD,2所以EF//CD,且,所以四边形平行四边形,所以CE//,以面PAB.···················································(Ⅱ)解:设点,G分为,的点,连结,//,因为面PAD,平PAD,所以AD,以OG··························································因为由(Ⅰ)知,DF又因为AB,以AD,所以AP2

DF

所以APD为三角形,所以PO,因为面PAD,PO面PAD,所以ABPO.又因为ADI,所以面ABCD.·········································8分故,,两垂直,可以点O为点,分别以OP的向为xy,z轴正方向,

3则所以2xy4,xx精品资料3则所以2xy4,xx建立空间直角坐标系O,图所示.1P(0,0,3),C(1,2,0),(1,0,0),E(,2,),22r所以PD,PC,)···················9分2设平面PDC的向量nx),rr取,n3,0,1),································································10设EC与平面所的角为,则

rcosnEC

3|,···················································11分3因为

ππ],以,π所以平面所角的大小为.············································分6(20本小题考查椭圆的标准方程及几何性质、直线与圆锥曲线的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、函数与方程思想、分类与整合思想等.满分1分.解法一:(Ⅰ)设点P坐为直线的率

k

yx

(;y直线的斜率k()··························································x

由已知有

y(x,······················································x4

x化简得点的迹方程为y4

(.·····································

(注:没写或)(Ⅱ)设

y

x

x),则4

y

.···········································

6直线的程为y,,得点M纵标为;·····6分2直线的方程为y,,点N纵坐标为y;······设在点处切线方程为y由得x2kxykx.·············8分000由,64kx整理得y

kxy

k

.将y得4x所以切线方程为yx.4y

,得

xk,9分4y

Mx,2xy4,xxxMx,2xy4,xxx令得点Q纵标y

xy

yx1.yyy···········································································································r设MQ,以y,所以所以

yy······················································x2y.将y

x4

x代入上式,2

)

,解得

.···········································································分解法二:(Ⅰ)同解法一.(Ⅱ)设Py

x),则4

y

.···········································6直线的程为y,x,点纵坐标为y;·····x2直线的方程为y,,点N纵坐标为y;······设在点P处的切线方程为yy由得x2kkx.·············8分000由,64kx整理得y

kxyxk.将y得,得,4yx所以切线方程为yx.4y4x1令x得点Q纵标为yy.4y4y···········································································································所以y

yy8xx

y

y

,············11分所以为线段MN的点,即

MQ

.······················································12分(21本小题主要考查导数的几何意义、导数及其应用、不等式等基础知识,考查推理论证能力、运算求解能力、创新意识等,考查函数与方程思想、化归与转化思想、分类与整合思想、数形合思想等.满分12分解:(Ⅰ)

,设切点为,0),·················································1分依题意,

f()0,f)0,

0,

»»精品资料»»解得

a

························································································3分所以f

.当时,f,f故间,调递增区间为·························5分(Ⅱ)令(x)f()(xx,.则(lnx),令h()g

,h

1(),···············································xx1(ⅰ)若m„,21因为当时,e,(),所以xx

,所以h()即

在(1,单调递增.又因为

所以当x时g

,从而g(x)在[1,单递增,而(1),以g(x),f(x(成.·······························1(ⅱ)若,2可得

1)在单递增.xx1因为hm,hm{},1m[1ln(2m2所以存在(1,1,得),且当)时,以hx即在(1,)单调递减,又因为,以当)时g,从而g(x)在x)上调递减,而(1),以当x(1,x)时(x,即f(xm成立.1纵上所述,的值范围是(]·····················································分2请生第)()()中选题答如多,按做第一计,答请写题.(22选修4:何证明选讲本小题主要考查圆周角定理、相似三角形的判定与性质、切割线定理等基础知识,考查推理论证能力、运算求解能力等,考查化归与转化思想等.满分分解:(Ⅰ)设外接圆的圆心为交点连结,则BEGBAEBGE.因为AF平分∠BAC,以BFFC,以FBE,·······················所以FBEEBG所以,以是ABE外接圆的切线.······································(Ⅱ)连接DF,则BC,以DF是O的径,

G因为BD

,DA

D

所以BD

DA

AF

.································································7分

O'因为AF平分∠BAC,以ABF∽AEC,

O

F

(Ⅱ)因为x…(Ⅱ)因为x…所以

ABAFAE

,所以ABAFEF)因为FBE,以FBE∽FAB,而,所以AB

BF

,所以BD

DA

AB.·····························································10分(23选修

;坐标系与参数方程本小题考查极坐标方程和参数方程、伸缩变换等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想等.满分10分2解:(Ⅰ)将消去参数,化为普通方程为2)y2sin

y

,即C:yx,···············································································2分将

xy

代入:xy,4cos

···

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论