(浙江专版)2023版高考数学一轮复习第七章不等式7.3简单的线性规划学案_第1页
(浙江专版)2023版高考数学一轮复习第七章不等式7.3简单的线性规划学案_第2页
(浙江专版)2023版高考数学一轮复习第七章不等式7.3简单的线性规划学案_第3页
(浙江专版)2023版高考数学一轮复习第七章不等式7.3简单的线性规划学案_第4页
(浙江专版)2023版高考数学一轮复习第七章不等式7.3简单的线性规划学案_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE1§7.3简单的线性规划考纲解读考点考纲内容要求浙江省五年高考统计202220222022202220221.区域问题1.会从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.掌握3,5分4(文),5分2.简单的线性规划会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.掌握13,4分13(文),4分13,4分12(文),4分14,4分14(文),4分4,4分分析解读1.线性规划是高考命题的热点.2.考查求目标函数的最值,可行域的面积,目标函数值求相应的参数值等.3.预计2022年高考试题中,线性规划的考查必不可少,复习时应引起高度重视.五年高考考点一区域问题1.(2022浙江文,4,5分)假设平面区域x+A.355 B.2 C.3答案B2.(2022浙江,3,5分)在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影.由区域x-A.22 B.4 C.32 D.6答案C3.(2022山东,4,5分)假设变量x,y满足x+y≤2,2xA.4 B.9 C.10 D.12答案C4.(2022山东,9,5分)x,y满足约束条件x-y-1≤0,2xA.5 B.4 C.5 D.2答案B5.(2022山东,6,5分)在平面直角坐标系xOy中,M为不等式组2xA.2 B.1 C.-13 D.-答案C教师用书专用(6—7)6.(2022安徽,9,5分)在平面直角坐标系中,O是坐标原点,两定点A,B满足|OA|=|OB|=OA·OB=2,那么点集{P|OP=λOA+μOB,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是()A.22 B.23 C.42 D.43答案D7.(2022课标Ⅰ,15,5分)假设x,y满足约束条件x-1≥0,x-答案3考点二简单的线性规划1.(2022浙江,4,4分)假设x,y满足约束条件x≥0A.[0,6] B.[0,4] C.[6,+∞) D.[4,+∞)答案D2.(2022课标全国Ⅰ文,7,5分)设x,y满足约束条件x+3y≤3A.0 B.1 C.2 D.3答案D3.(2022北京文,4,5分)假设x,y满足x≤3A.1 B.3 C.5 D.9答案D4.(2022山东文,3,5分)x,y满足约束条件x-A.-3 B.-1 C.1 D.3答案D5.(2022课标全国Ⅱ,5,5分)设x,y满足约束条件2xA.-15 B.-9 C.1 D.9答案A6.(2022天津,2,5分)设变量x,y满足约束条件2xA.23 B.1 C.3答案D7.(2022山东,4,5分)x,y满足约束条件x-A.0 B.2 C.5 D.6答案C8.(2022广东,6,5分)假设变量x,y满足约束条件4xA.4 B.235 C.6 D.答案B9.(2022湖南,4,5分)假设变量x,y满足约束条件x+A.-7 B.-1 C.1 D.2答案A10.(2022山东,6,5分)x,y满足约束条件x-A.3 B.2 C.-2 D.-3答案B11.(2022天津,2,5分)设变量x,y满足约束条件x+A.2 B.3 C.4 D.5答案B12.(2022浙江,14,4分)假设实数x,y满足x2+y2≤1,那么|2x+y-2|+|6-x-3y|的最小值是.

答案313.(2022浙江,13,4分)当实数x,y满足x+2y-答案114.(2022浙江文,12,4分)假设实数x,y满足x+2y-答案[1,3]15.(2022浙江,13,4分)设z=kx+y,其中实数x,y满足x+y-答案216.(2022课标全国Ⅲ理,13,5分)假设x,y满足约束条件x-y≥0答案-117.(2022课标全国Ⅰ,16,5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时.生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,那么在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.

答案216000教师用书专用(18—35)18.(2022北京,2,5分)假设x,y满足x-A.0 B.1 C.32答案D19.(2022天津,2,5分)设变量x,y满足约束条件x+2≥0A.3 B.4 C.18 D.40答案C20.(2022福建,5,5分)假设变量x,y满足约束条件x+2A.-52C.-32答案A21.(2022北京,6,5分)假设x,y满足x+A.2 B.-2 C.12 D.-答案D22.(2022天津,2,5分)设变量x,y满足约束条件3xA.-7 B.-4 C.1 D.2答案A23.(2022北京,8,5分)设关于x,y的不等式组2x-y+1>0,x+m<0A.-∞,43 B.C.-∞,-23答案C24.(2022课标全国Ⅱ,9,5分)a>0,x,y满足约束条件x≥1A.14 B.1答案B25.(2022湖南,4,5分)假设变量x,y满足约束条件y≤2A.-52 B.0 C.53答案C26.(2022陕西,10,5分)某企业生产甲、乙两种产品均需用A,B两种原料.生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,那么该企业每天可获得最大利润为()甲乙原料限额A(吨)3212B(吨)128A.12万元 B.16万元C.17万元 D.18万元答案D27.(2022广东,3,5分)假设变量x,y满足约束条件y≤A.5 B.6 C.7 D.8答案B28.(2022安徽,5,5分)x,y满足约束条件x+y-A.12或-1 B.2或1答案D29.(2022福建,11,4分)假设变量x,y满足约束条件x-y+1≤0答案130.(2022大纲全国,14,5分)设x、y满足约束条件x-y≥0答案531.(2022江苏,9,5分)抛物线y=x2在x=1处的切线与两坐标轴围成的三角形区域为D(包含三角形内部与边界).假设点P(x,y)是区域D内的任意一点,那么x+2y的取值范围是.

答案-32.(2022课标全国Ⅲ,13,5分)假设x,y满足约束条件x-y+1≥0答案333.(2022湖南,14,5分)假设变量x,y满足约束条件y≤x,x答案-234.(2022陕西,18,12分)在直角坐标系xOy中,点A(1,1),B(2,3),C(3,2),点P(x,y)在△ABC三边围成的区域(含边界)上.(1)假设PA+PB+PC=0,求|OP|;(2)设OP=mAB+nAC(m,n∈R),用x,y表示m-n,并求m-n的最大值.解析(1)解法一:∵PA+PB+PC=0,又PA+PB+PC=(1-x,1-y)+(2-x,3-y)+(3-x,2-y)=(6-3x,6-3y),∴6-3即OP=(2,2),故|OP|=22.解法二:∵PA+PB+PC=0,那么(OA-OP)+(OB-OP)+(OC-OP)=0,∴OP=13(OA+OB+OC∴|OP|=22.(2)∵OP=mAB+nAC,∴(x,y)=(m+2n,2m+n),∴x两式相减得,m-n=y-x,令y-x=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1,故m-n的最大值为1.35.(2022天津文,16,13分)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:连续剧播放时长(分钟)广告播放时长(分钟)收视人次(万)甲70560乙60525电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x,y表示每周方案播出的甲、乙两套连续剧的次数.(1)用x,y列出满足题目条件的数学关系式,并画出相应的平面区域;(2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?解析本小题主要考查用二元线性规划的根底知识和根本方法解决简单实际问题的能力,以及抽象概括能力和运算求解能力.(1)由,x,y满足的数学关系式为70即7该二元一次不等式组所表示的平面区域为图1中的阴影局部:图1(2)设总收视人次为z万,那么目标函数为z=60x+25y.考虑z=60x+25y,将它变形为y=-125x+z25,这是斜率为-125,随z变化的一族平行直线.z25为直线在y轴上的截距,当图2解方程组7x所以,电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.三年模拟A组2022—2022年模拟·根底题组考点一区域问题1.(2022浙江9+1高中联盟期中,4)x,y满足约束条件x≥1A.m≥3 B.m≤3C.m≤72 D.m≤答案D2.(2022浙江金华十校联考(4月),15)假设不等式组x+2y-答案43.(2022浙江宁波二模(5月),15)A(1,2),B(-2,1),O为坐标原点.假设直线l:ax+by=2与△ABO所围成的区域(包含边界)没有公共点,那么a-b的取值范围为.

答案-考点二简单的线性规划4.(2022浙江高考模拟卷,4)设实数x,y满足x≥0A.1 B.73 C.3 D.答案C5.(2022浙江温州适应性测试,4)假设实数x,y满足约束条件x+A.[3,4] B.[3,12] C.[3,9] D.[4,9]答案C6.(2022浙江绍兴质量调测(3月),6)实数x,y满足不等式组x-A.-1 B.1 C.103 D.答案B7.(2022浙江“超级全能生〞联考(3月),6)假设实数x,y满足不等式组x-A.143 B.19答案BB组2022—2022年模拟·提升题组一、选择题1.(2022浙江浙东北联盟期中,5)设实数x,y满足x-A.-13 B.-1答案C2.(2022浙江名校协作体期初,3)假设变量x,y满足约束条件y≤A.3 B.2 C.4 D.5答案A3.(2022浙江“七彩阳光〞联盟期初联考,7)变量x,y满足约束条件x-2y≥A.[-6,6] B.(-∞,-6]∪[6,+∞)C.[-7,7] D.(-∞,-7]∪[7,+∞)答案D4.(2022浙江名校(绍兴一中)交流卷一,8)实数x,y满足|2x+y+1|≤|x+2y+2|,且-1≤y≤1,那么x2+10x+y2的最小值为()A.-17 B.-15 C.10-25 D.-7答案B5.(2022浙江名校(衢州二中)交流卷五,8)假设实数x,y满足|[x]|+|y|≤1([x]表示不超过x的最大整数),那么x+A.43,3 B.43,答案A6.(2022浙江名校(衢州二中)交流卷五,5)假设x,y满足约束条件x+A.(-3,6) B.(3,6)C.(-6,3) D.[-3,6]答案C二、填空题7.(2022浙江“七彩阳光〞联盟期中,14)设实数x,y满足不等式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论