




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1
/amirhossein-kz/Awesome-Diffusion-Models-in-Medical-Imaging
arXiv:2211.07804v1[eess.IV]14Nov2022
DIFFUSIONMODELSFORMEDICALIMAGEANALYSIS:ACOMPREHENSIVESURVEY
AmirhosseinKazerouni
SchoolofElectricalEngineeringIranUniversityofScienceandTechnology
Tehran,Iran
amirhossein477@
EhsanKhodapanahAghdam
DepartmentofElectricalEngineering
ShahidBeheshtiUniversity
Tehran,Iran
ehsan.khpaghdam@
MoeinHeidari
SchoolofElectricalEngineeringIranUniversityofScienceandTechnology
Tehran,Iranmoein_heidari@elec.iust.ac.ir
RezaAzad
InstituteofImagingandComputerVision
RWTHAachenUniversity
Aachen,Germany
azad@lfb.rwth-aachen.de
MohsenFayyaz
Microsoft
Berlin,Germanymohsenfayyaz@
IlkerHacihaliloglu
DepartmentofRadiology
DepartmentofMedicine
UniversityofBritishColumbia
BritishColumbia,Canada
ilker.hacihaliloglu@ubc.ca
DoritMerhof
FacultyofInformaticsandDataScience
UniversityofRegensburg
Regensburg,Germany
dorit.merhof@ur.de
ABSTRACT
Denoisingdiffusionmodels,aclassofgenerativemodels,havegarneredimmenseinterestlatelyinvariousdeep-learningproblems.AdiffusionprobabilisticmodeldefinesaforwarddiffusionstagewheretheinputdataisgraduallyperturbedoverseveralstepsbyaddingGaussiannoiseandthenlearnstoreversethediffusionprocesstoretrievethedesirednoise-freedatafromnoisydatasamples.Diffusionmodelsarewidelyappreciatedfortheirstrongmodecoverageandqualityofthegeneratedsamplesinspiteoftheirknowncomputationalburdens.Capitalizingontheadvancesincomputervision,thefieldofmedicalimaginghasalsoobservedagrowinginterestindiffusionmodels.Withtheaimofhelpingtheresearchernavigatethisprofusion,thissurveyintendstoprovideacomprehensiveoverviewofdiffusionmodelsinthedisciplineofmedicalimageanalysis.Specifically,westartwithanintroductiontothesolidtheoreticalfoundationandfundamentalconceptsbehinddiffusionmodelsandthethreegenericdiffusionmodelingframeworks,namely,diffusionprobabilisticmodels,noise-conditionedscorenetworks,andstochasticdifferentialequations.Then,weprovideasystematictaxonomyofdiffusionmodelsinthemedicaldomainandproposeamulti-perspectivecategorizationbasedontheirapplication,imagingmodality,organofinterest,andalgorithms.Tothisend,wecoverextensiveapplicationsofdiffusionmodelsinthemedicaldomain,includingsegmentation,anomalydetection,image-to-imagetranslation,2/3Dgeneration,reconstruction,denoising,andothermedically-relatedchallenges.Furthermore,weemphasizethepracticalusecaseofsomeselectedapproaches,andthenwediscussthelimitationsofthediffusionmodelsinthemedicaldomainandproposeseveraldirectionstofulfillthedemandsofthisfield.Finally,wegathertheoverviewedstudieswiththeiravailableopen-sourceimplementationsatour
GitHub1
.
Weaimtoupdatetherelevantlatestpaperswithinitregularly.
KeywordsGenerativemodels.Diffusionmodels.Denoisingdiffusionmodels.Noiseconditionedscorenetworks.Score-basedmodels.Medicalimaging.Medicalapplications.Survey
2
Generator
True/
False
Decoder
Generator
SoftMax
Flow
DiffusionModelsforMedicalImageAnalysis:AComprehensiveSurvey
Discriminator
(a)
GAN
Encoder
(c)VAE
Discriminator
(b)Energy-basedModels
Inverse
(d)Flow-basedmodels
(e)
Diffusionmodels
Figure1:Inthisfigure,Wedisplaytherevolutionofgenerativemodelsandtheinsightsbehindthem.(
a
)GeneralAdversarialNetwork(GAN)[
1
]isanend-to-endpipelinethattrainsthegeneratorinanadversarialmannertogeneratesamplesthatthediscriminatoriscapableofdistinguishingfromtherealdatasample.(
b
)Energy-basedModel(EBM)[
2
],alsoknownasnon-normalizedprobabilisticmodels,trainsinthesamewayasGANswithtwomajormodifications.First,thediscriminatorlearnsaproperenergy-basedfunctionthatmapsthedatasampletoadistributionspace.Second,thegeneratorutilizesapriorinputtoenhancethesamplegenerationperformance.(
c
)VariationalAutoEncoder(VAE)[
3
]isastandalonenetworkthatfollowsaprojectionfromadatasampletoalow-dimensionallatentspacebytheencoderandgeneratesbysamplingfromitviaadecoderpath.(
d
)Normalizingflow(NF)[
4
]utilizesaninvertibleflowfunctiontotransforminputtolatentspaceandgeneratesampleswiththeinverseflowfunction.(
e
)DiffusionModelsinterminglethenoisewiththeinputinsuccessivestepsuntilitbecomesanoisedistributionbeforeapplyingareverseprocesstoneutralizethenoiseadditionineachstepinthesamplingprocedure.
1Introduction
Generativemodelingusingneuralnetworkshasbeenaformidableforceinthepastdecadeofdeeplearning.Sincetheiremergence,generativemodelshavemadeatremendousimpactinvariousdomainsrangingfromimages[
5
,
6
],audio[
7
,
8
],totext,[
9
]andpointclouds[
10
].Fromaprobabilisticmodelingviewpoint,thekeydefiningcharacteristicofagenerativemodelisthatitistrainedinsuchawaysothatitssamples~pθ-(comefromthesamedistributionasthetrainingdatadistribution,z~pd-z(.Thepioneeringenergy-basedmodelsachievethisbydefininganunnormalizedprobabilitydensityoverastatespace;however,thesemethodsrequireMarkovChainMonteCarlo(MCMC)samplingduringbothtrainingandinference,whichisaslowiterativeprocess[
11
].Followingtheunprecedentedsurgeofavailabledatasets,aswellasadvancesingeneraldeeplearningarchitectures,therehasbeenarevolutionaryparadigmshiftingenerativemodeling.Specifically,thethreemainstreamgenerativeframeworksinclude,namely,Generativeadversarialnetworks(GANs)[
1
],variationalautoencoders(VAEs)[
12
,
3
],andnormalizingflows[
13
](see
Figure1
).Generativemodelstypicallyentailkeyrequirementstobeadoptedinreal-worldproblems.Theserequirementsinclude(i)high-qualitysampling,(ii)modecoverageandsamplediversity,and(iii)fastexecutiontimeandcomputationallyinexpensivesampling[
14
](see
Figure2
).Generativemodelsoftenmakeaccommodationsbetweenthesecriteria.Specifically,GANsarecapableofgeneratinghigh-qualitysamplesrapidly,buttheyhavepoormodecoverageandarepronetolacksamplingdiversity.Conversely,VAEsandnormalizingflowssufferfromtheintrinsicpropertyoflowsamplequalitydespitebeingwitnessedincoveringdatamodes.GANsconsistoftwomodels:ageneratorandacritic(discriminator),whichcompetewitheachotherwhilesimultaneouslymakingeachotherstronger.Thegeneratortriestocapturethedistributionoftrueexamples,whilethediscriminator,whichistypicallyabinaryclassifier,estimatestheprobabilityofagivensamplecomingfromtherealdataset.Itworksasacriticandisoptimizedtorecognizethesyntheticsamplesfromtherealones.AcommonconcernwithGANsistheirtrainingdynamics
3
FastSampling
DiffusionModelsforMedicalImageAnalysis:AComprehensiveSurvey
whichhavebeenrecognizedasbeingunstable,resultingindeficienciessuchasmodecollapse,vanishinggradients,andconvergence[
15
].Therefore,animmenseinteresthasalsoinfluencedtheresearchdirectionofGANstoproposemoreefficientvariants[
16
,
17
].Variationalauto-encoders(VAEs)optimizethelog-likelihoodofthedatabymaximizingtheevidencelowerbound(ELBO).Despitetheremarkableachievements,thebehaviorofVariationalAutoencodersisstillfarfromsatisfactoryduetosometheoreticalandpracticalchallengessuchasbalancingissue[
18
]andvariablecollapsephenomenon[
19
].Aflow-basedgenerativemodelisconstructedbyasequenceofinvertibletransformations.Specifically,anormalizingflowtransformsasimpledistributionintoacomplexonebyapplyingasequenceofinvertibletransformationfunctionswhereonecanobtainthedesiredprobabilitydistributionforthefinaltargetvariableusingachangeofvariablestheorem.UnlikeGANsandVAEs,thesemodelsexplicitlylearnthedatadistribution;therefore,theirlossfunctionissimplythenegativelog-likelihood[
20
].Despitebeingfeasiblydesigned,thesegenerativemodelshavetheirspecificdrawbacks.SincetheLikelihood-basedmethodhastoconstructanormalizedprobabilitymodel,aspecifictypeofarchitecturemustbeused(AutoregressiveModel,FlowModel),orinthecaseofVAE,analternativeLosssuchasELBOisnotcalculateddirectlyforthegeneratedprobabilitydistribution.Incontrast,thelearningprocessofGANsisinherentlyunstableduetothenatureoftheadversariallossoftheGAN.Recently,diffusionmodels[
21
,
22
]haveemergedaspowerfulgenerativemodels,showcasingoneoftheleadingtopicsincomputervisionsothatresearchersandpractitionersalikemayfinditchallengingtokeeppacewiththerateofinnovation.Fundamentally,diffusionmodelsworkbydestroyingtrainingdatathroughthesuccessiveadditionofGaussiannoiseandthenlearningtorecoverthedatabyreversingthisnoisingprocess.
Todate,diffusionmodelshavebeenfoundtobeusefulinawideva-rietyofareas,rangingfromgenerativemodelingtaskssuchasimagegeneration[
23
],imagesuper-resolution[
24
],imageinpainting[
25
]todiscriminativetaskssuchasimagesegmentation[
26
],classification[
27
],andanomalydetection[
28
].Recently,themedicalimagingcommu-nityhaswitnessedexponentialgrowthinthenumberofdiffusion-basedtechniques(see
Figure4
).Asshownin
Figure4
,awealthofresearchisdedicatedtotheapplicationsofdiffusionmodelsindiversemedicalimagingscenarios.Thus,asurveyoftheexistingliteratureisbothbeneficialforthecommunityandquitetimely.Tothisend,thissurveysetsouttoprovideacomprehensiveoverviewoftherecentadvancesmadeandprovidesaholisticoverviewofthisclassofmodelsinmedicalimaging.Athoroughsearchoftherelevantliteraturerevealedthatwearethefirsttocoverthediffusion-basedmodelsexploitedinthemedicaldomain.Wehopethisworkwillpointoutnewpaths,providearoadmapforresearchers,andinspirefurtherinterestinthevisioncommunitytoleveragethepotentialofdiffusionmodelsinthemedicaldomain.Ourmajorcontributionsinclude:
●Thisisthefirstsurveypaperthatcomprehensivelycoversapplicationsofdiffusionmodelsinthemedicalimagingdomain.Specifically,wepresentacomprehensiveoverviewofallavailablerelevantpapers(untilOctober2022).
●Wedeviseamulti-perspectivecategorizationofdiffusionmodelsinthemedicalcommunity,providingasystematicaltaxonomyofresearchindiffusionmodelsandtheirapplications.Wedividetheexistingdiffusionmodelsintothreecategories:denoisingdiffusionprobabilisticmodels,noise-conditionedscorenetworks,andstochasticdifferentialequations.Moreover,wegrouptheapplicationsofdiffusionmodelsintosevencategories:anomalydetection,denoising,reconstruction,segmentation,image-to-imagetranslation,imagegeneration,andotherapplications.
Denoising
Diffusion
Models
Generative
AdversarialNetworks
High
Quality
Samples
Mode
Coverage/Diversity
,
VariationalAutoencoders
NormalizingFlows
Figure2:Generativelearningtrial[
14
].De-spitetheabilityofGANstoquicklygeneratehigh-fidelitysamples,theirmodecoverageislim-ited.Inaddition,VAEsandnormalizingflowshavebeenrevealedtohaveagreatdealofdiver-sity;however,theygenerallyhavepoorsamplingquality.Diffusionmodelshaveemergedtocom-pensateforthedeficiencyofVAEsandGANsbyshowingadequatemodecoverageandhigh-qualitysampling.Nevertheless,duetotheiritera-tivenature,whichcausesaslowsamplingprocess,theyarepracticallyexpensiveandrequiremoreimprovement.
●Wedonotrestrictourattentiontoapplicationandprovideanewtaxonomy(see
Figure4
)whereeachpaperisbroadlyclassifiedaccordingtotheproposedalgorithmalongwiththeorganconcernedandimagingmodality,respectively.
●Finally,wediscussthechallengesandopenissuesandidentifythenewtrendsraisingopenquestionsaboutthefuturedevelopmentofdiffusionmodelsinthemedicaldomaininbothalgorithmsandapplications.
PaperOrganization.In
Section2.1
,wepresentadetailedoverviewoftheconceptsandtheoreticalfoundationsbehinddiffusionmodels,coveringthreesub-categorieswithasimilarbaselinedefinition.
Sections3.1
to
3.7
comprehensivelycovertheapplicationsofdiffusionmodelsinseveralmedicalimagingtasks,asshownin
Figure3
,whereas
Section3.8
providesacomparativetask-specificoverviewofdifferentliteraturework.Weconcludethissurveybypinpointingfuturedirectionsandopenchallengesfacingdiffusionmodelsinthemedicalimagingdomainin
Section4
.
4
Numberofarticles
DiffusionModelsforMedicalImageAnalysis:AComprehensiveSurvey
econstructionImageGeneration
│egmentationOtherApplications
Image-to-ImageTranslation
11%
8%
11%
34%
16%
13%
AnomalyDetectionDenoising
8%
(a)
OpticalbasedX-raybased
63%
2%
9%
MRI
NuclearImaging
26%
(b)
16
14
12
10
8
6
4
2
0
AnomalyDetection
Denoising
Segmentation
Image-to-ImageTranslation
Reconstruction
ImageGeneration
OtherApplications
2021-Q3
2021-Q4
2022-Q1Quarters
2022-Q2
2022-Q3
(c)
Figure3:Thediagram(a)showstherelativeproportionofpublishedpaperscategorizedaccordingtotheirapplicationand(b)accordingtotheirimagingmodalities.(c)indicatesthenumberofdiffusion-basedresearchpaperspublishedinthemedicaldomain.Thegrowthrateperyearrevealstheimportanceofdiffusionmodelsforfuturework.
2Taxonomy
Generativeapproacheshaveundergonesignificantadvancesinmedicalimagingoverthepastfewdecades.Therefore,therehavebeennumeroussurveypaperspublishedondeepgenerativemodelsformedicalimaging[
29
,
30
,
31
].Someofthesepapersfocusonaspecificapplicationonly,whileothersconcentrateonaspecificimagemodality.Thereis,however,alackofcomprehensivesurveysontheapplicationsofdiffusionmodelsinmedicalimaging.Tothisend,inthissurvey,wedeviseamulti-perspectivevisionofdiffusionmodelsinwhichwediscussexistingliteraturebasedontheirapplicationsinthemedicaldomain.Nonetheless,wedonotrestrictourinteresttotheapplicationsbutdescribetheunderlyingworkingprinciples,theorgan,andtheimagingmodalityoftheproposedmethod.Wefurtherdiscusshowthisadditionalinformationcanhelpresearchersattempttoconsolidatetheliteratureacrossthespectrum.Abriefoutlookofourpaperisdepictedin
Figure4
.
2.1Algorithm
Thereareatleastthreesub-categoriesofdiffusionmodelsthatcomplywiththebaselinedefinitionofdiffusionmodels[
60
].First,therearedenoisingdiffusionprobabilisticmodels(DDPMs)[
21
,
22
],whichareaclassoflatentvariablemodelsinspiredbyconsiderationsfromnonequilibriumthermodynamics.Thesecondsub-categoryisrepresentedbynoise-conditionedscorenetworks(NCSNs)[
61
],whichisfundamentallybasedonestimatingthederivativeofthelogdensityfunctionoftheperturbeddatadistributionatdifferentnoiselevels.Stochasticdifferentialequations(SDEs)[
62
]formthethirdsub-category,whichencapsulatespreviousapproachesandcanbeviewedasageneralizationoverDDPMsandNCSNs.Wehereinafterelaborateonthedetailsofeachcategory.
2.1.1DenoisingDiffusionProbabilisticModels(DDPMs)
ForwardProcess.DDPMdefinestheforwarddiffusionprocessasaMarkovChainwhereGaussiannoiseisaddedinsuccessivestepstoobtainasetofnoisysamples.Considerg-z0(astheuncorrupted(original)datadistribution.Givenadatasamplez0华g-z0(,aforwardnoisingprocesspwhichproduceslatentz1throughzTbyaddingGaussiannoiseattimetisdefinedasfollows:
g-zt|zt—1(=八╱zt﹔^1_8t.zt—1,8t.t、,Ate{1,...,7}(1)
where7and81,...,8Te[〇,1(representthenumberofdiffusionstepsandthevariancescheduleacrossdiffusion
stepsrespectively.tistheidentitymatrixand八-z﹔m,7(representsthenormaldistributionofmeanmandcovariance7.
Consideringat=1_8tandt=!=0as,onecandirectlysampleanarbitrarystepofthenoisedlatentconditionedon
theinputz0asfollows:
g-xt|x0(=N╱xt﹔^tx0,-1_t(t、
(2)
xt=^tx0十^1_al9(3)
5
Modality:PET
Modality:CT/MRI
Organ:Brain
1.MT-Diffusion
Organ:Multi-organ
Algorithm:DDPM
Algorithm:DDPM/SDE
Modality:OCT
Modality:MRI
16.DenoOCT-DDPM
Organ:Eye
2.UMM-CSGM
Organ:Brain
Algorithm:DDPM
Algorithm:SDE
Modality:MRI
Organ:Brain/Abdominal
3.SynDiff
Organ:Brain
Algorithm:DDPM
Modality:Microscopic
Modality:CT/MRI
Organ:Giloma
4.SIM-SGM
Organ:Multi-organ/Brain
Algorithm:SDE
Modality:MRI
19.DISPR
Organ:BloodCell
5.MC-DDPM
Organ:Knee
Algorithm:DDPM
Modality:MRI
Modality:MRI
Organ:Brain
6.Score-MRI
Organ:Knee
Algorithm:DDPM
Modality:PET
Modality:MRI
Organ:Heart
7.DiffuseRecon
Organ:Knee
Algorithm:DDPM
Algorithm:DDPM
Reconstruction
Modality:MRI
Modality:MRI
8.AdaDiff
Organ:Brain
Organ:Brain
Algorithm:DDPM
Modality:MRI
Organ:Brain
9.MRI-DDMC
Organ:Brain
Algorithm:DDPM
Algorithm:SDE
Modality:MRI
Modality:MRI
Organ:Knee/Brain
10.Self-Score
Organ:Brain
Algorithm:DDPM
Modality:MRI/X-ray
Organ:Multi-organ
11.MCG
Organ:Brain/Chest
Algorithm:DDPM
Modality:Microscopic
Organ:Brain
Organ:Skin
26.Multi-scaleDDAM
Algorithm:DDPM
Modality:X-ray
Segmentation
13.DARL
Organ:Heart/Eye
Organ:Aminoacids
Algorithm:DDPM
Algorithm:DDPM
Modality:MRI
Modality:MRI
Organ:Brain
14.IISE
Organ:Knee/Liver
Algorithm:DDPM
Organ:Brain
DiffusionModelsforMedicalImageAnalysis:AComprehensiveSurvey
15.PET-DDPM
Denoising
Image-to-ImageTranslation
Modality:MRI/CT
17.BrainGen
Algorithm:DDPM
18.MFDPM
Algorithm:DDPM
Modality:Microscopic
ImageGeneration
Algorithm:DDPM
20.3D-DDPM
Algorithm:SDE
21.DDM
DiffusionModels
Taxonomy
22.AnoDDPM
Algorithm:DDPM
Modality:MRI
23.CDPM
AnomalyDetection
24.IITM-Diffusion
Algorithm:NCSN
Modality:CT
25.AnoDDIM
Algorithm:SDE
Modality:MRI
12.brainSPADE
Algorithm:DDPM
Modality:X-ray
crystallography
27.SMCDiff
OtherApplications
28.R2D2+
Algorithm:SDE
Modality:CT/MRI
29.BAnoDDPM
Algorithm:DDPM
Figure4:Theproposedtaxonomyfordiffusion-basedmedicalimageanalysisresearchisbuiltonsevensub-fields:I)Image-to-ImageTranslation,II)MedicalImageReconstruction,III)ImageSegmentation,IV)MedicalImageDenoising,V)ImageGeneration,VI)AnomalyDetectionandVII)multi-disciplinaryapplications,namedOtherApplications.Forthesakeofbrevity,weutilizetheprefixnumbersinthepaper’snameinascendingorderanddenotethereferenceforeachstudyas
follows:1.[
32
],2.[
33
],3.[
34
],4.[
35
],5.[
36
],6.[
37
],7.[
38
],8.[
39
],9.[
40
],10.[
41
],11.[
42
],12.[
43
],13.[
44
],14.[
45
],15.[
46
],16.[
47
],17.[
48
],18.[
49
],19.[
50
],20.[
51
],21.[
52
],22.[
53
],23.[
54
],24.[
55
],25.[
28
],26.[
56
],27.[
57
],28.[
58
],29.[
59
].
6
DiffusionModelsforMedicalImageAnalysis:AComprehensiveSurvey
ReverseProcess.Leveragingtheabovedefinitions,wecanapproximateareverseprocesstogetasamplefromg(z0).Tothisend,wecanparameterizethisreverseprocessbystartingatp(xT)=c(xT;φ,t)asfollows:
T
pθ(x0:T)=p(xT)(pθ(xt—1lxt)
t=1
pθ(xt—1lxt)=c(xt—1;mθ(xt,t),θ(xt,t))
(4)
(5)
Totrainthismodelsuchthatp(z0)learnsthetruedatadistributiong(z0),wecanoptimizethefollowingvariationalboundonnegativelog-likelihood:
E[_logpθ(x0)]<Bq┌_log┐
=Eq_logp(xT)_log(6)
=_LVL.B
Hoetal.[
22
]founditbetternottodirectlyparameterizemθ(zt,t)asaneuralnetwork,butinsteadtotrainamodel9θ(zt,t)topredict9.Hence,byreparameterizing
Equation(6)
,theyproposedasimplifiedobjectiveasfollows:
Lsimple=Et,x0,e)|9_9θ(zt,t)|2」(7)
wheretheauthorsdrawaconnectionbetweenthelossin
Equation(6)
togenerativescorenetworksinSongetal.[
61
].
2.1.2NoiseConditionedScoreNetworks(NCSNs)
Thescorefunctionofsomedatadistributionp(z)isdefinedasthegradientofthelogdensitywithrespecttotheinput,Vxlogp(z).Toestimatethisscorefunction,onecantrainasharedneuralnetworkwithscorematching.Specifically,thescorenetworks9isaneuralnetworkparameterizedby9,whichistrainedtoapproximatethescoreofp(z)(sθ(z)sVxlogp(z))byminimizingthefollowingobjective:
Ex~p(x)|sθ(z)_Vxlogp(z)|(8)
However,duetothecomputationalburdenofcalculatingVxlogp(z),scorematchingisnotscalabletodeepnetworksandhighdimensionaldata.Tomitigatethisproblem,theauthorsof[
61
]proposetoexploitdenoisingscorematching[
63
]andslicedscorematching[
64
].Moreover,Songetal.[
61
]highlightmajorchallengesthatpreventanaiveapplicationofscore-basedgenerativemodelinginrealdata.Thekeychallengeisthefactthattheestimatedscorefunctionsareinaccurateinlow-densityregionssincedataintherealworldtendtoconcentrateonlow-dimensionalmanifoldsembeddedinahigh-dimensionalspace(themanifoldhypothesis).TheauthorsdemonstratethattheseproblemscanbeaddressedbyperturbingthedatawithGaussiannoiseatdifferentscales,asitmakesthedatadistributionmoreamenabletoscore-basedgenerativemodeling.Theyproposetoestimatethescorecorrespondingtoallnoiselevelsbytrainingasinglenoise-conditionedscorenetwork(NCSN).TheyderiveVxlog(pσt(z))asVxtlogpσt(ztlz)=_xxbychoosingthenoisedistributiontobepσt(ztlz)=c╱zt;z,7.t、whereztisanoisedversionofz.Thus,foragivensequenceofGaussiannoisescales71<72<...<7T,
Equation(8)
canbewrittenas:
u(7t)Ep(x)Ext~pσt(xt|x)sθ(zt,7t)+(9)
whereu(7t)isaweightingfunction.Theinferenceisdoneusinganiterativeprocedurecalled"Langevindynamics"[
65
,
66
].LangevindynamicsdesignanMCMCproceduretosamplefromadistributionp(x)usingonlyitsscorefunctionVxlogp(x).Specifically,tomovefromarandomsamplex0~π(x)towardssamplesfromp(x),ititeratesthefollowing:
zi=zi—1+2Vxlogp(z)+′e.wi(10)
e
7
■x_f-x,t(■t十g-t(■w(11)
Figure5:TensynthetichistopathologyimagesgeneratedbyMFDPM[
49
].
wherewi~c-〇,t(,andi∈u1,...,N}.Whene二〇andN二o,xisamplesobtainedfromthisprocedureconvergetoasamplefromp-x(.Theauthorsof[
61
]proposeamodificationofthisalgorithmnomenclatureastheannealedLangevindynamicsalgorithmsincethenoisescale7idecreases(anneals)graduallyovertimetomitigatesomepitfallsandfailuremodesofscorematching[
67
].
2.1.3StochasticDifferentialEquations(SD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年农产品品牌建设资金申请成功案例汇编与分析报告
- 2025年地热能源供暖区域供暖项目经济效益与社会影响评估报告
- 电子借钱合同协议书范本
- 销售团队代理合同协议书
- 瑜伽员工聘用合同协议书
- 汽车正规的定金合同范本
- 济南买车位出租合同范本
- 鸡场养殖合同协议书范本
- 清运渣土车维修合同范本
- 高州市小区物业合同范本
- QC成果-临时用电安全管理优化实践
- 车间安全应急管理制度
- 货场租赁协议
- 2025年全国中医医师定期考核中医专业理论知识考试题库及答案(共五套)
- 商铺顶棚拆除方案范本
- 英语四六级资料 全国大学英语四六级全部词汇
- 食品、生鲜、日用品、办公用品、商品等采购服务方案(技术标)
- 校长一日工作流程
- 《医院感染与手卫生》课件
- 横纹肌溶解症的护理
- 老旧小区PE管道改造方案
评论
0/150
提交评论