扩散模型医学图像分析 综述_第1页
扩散模型医学图像分析 综述_第2页
扩散模型医学图像分析 综述_第3页
扩散模型医学图像分析 综述_第4页
扩散模型医学图像分析 综述_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1

/amirhossein-kz/Awesome-Diffusion-Models-in-Medical-Imaging

arXiv:2211.07804v1[eess.IV]14Nov2022

DIFFUSIONMODELSFORMEDICALIMAGEANALYSIS:ACOMPREHENSIVESURVEY

AmirhosseinKazerouni

SchoolofElectricalEngineeringIranUniversityofScienceandTechnology

Tehran,Iran

amirhossein477@

EhsanKhodapanahAghdam

DepartmentofElectricalEngineering

ShahidBeheshtiUniversity

Tehran,Iran

ehsan.khpaghdam@

MoeinHeidari

SchoolofElectricalEngineeringIranUniversityofScienceandTechnology

Tehran,Iranmoein_heidari@elec.iust.ac.ir

RezaAzad

InstituteofImagingandComputerVision

RWTHAachenUniversity

Aachen,Germany

azad@lfb.rwth-aachen.de

MohsenFayyaz

Microsoft

Berlin,Germanymohsenfayyaz@

IlkerHacihaliloglu

DepartmentofRadiology

DepartmentofMedicine

UniversityofBritishColumbia

BritishColumbia,Canada

ilker.hacihaliloglu@ubc.ca

DoritMerhof

FacultyofInformaticsandDataScience

UniversityofRegensburg

Regensburg,Germany

dorit.merhof@ur.de

ABSTRACT

Denoisingdiffusionmodels,aclassofgenerativemodels,havegarneredimmenseinterestlatelyinvariousdeep-learningproblems.AdiffusionprobabilisticmodeldefinesaforwarddiffusionstagewheretheinputdataisgraduallyperturbedoverseveralstepsbyaddingGaussiannoiseandthenlearnstoreversethediffusionprocesstoretrievethedesirednoise-freedatafromnoisydatasamples.Diffusionmodelsarewidelyappreciatedfortheirstrongmodecoverageandqualityofthegeneratedsamplesinspiteoftheirknowncomputationalburdens.Capitalizingontheadvancesincomputervision,thefieldofmedicalimaginghasalsoobservedagrowinginterestindiffusionmodels.Withtheaimofhelpingtheresearchernavigatethisprofusion,thissurveyintendstoprovideacomprehensiveoverviewofdiffusionmodelsinthedisciplineofmedicalimageanalysis.Specifically,westartwithanintroductiontothesolidtheoreticalfoundationandfundamentalconceptsbehinddiffusionmodelsandthethreegenericdiffusionmodelingframeworks,namely,diffusionprobabilisticmodels,noise-conditionedscorenetworks,andstochasticdifferentialequations.Then,weprovideasystematictaxonomyofdiffusionmodelsinthemedicaldomainandproposeamulti-perspectivecategorizationbasedontheirapplication,imagingmodality,organofinterest,andalgorithms.Tothisend,wecoverextensiveapplicationsofdiffusionmodelsinthemedicaldomain,includingsegmentation,anomalydetection,image-to-imagetranslation,2/3Dgeneration,reconstruction,denoising,andothermedically-relatedchallenges.Furthermore,weemphasizethepracticalusecaseofsomeselectedapproaches,andthenwediscussthelimitationsofthediffusionmodelsinthemedicaldomainandproposeseveraldirectionstofulfillthedemandsofthisfield.Finally,wegathertheoverviewedstudieswiththeiravailableopen-sourceimplementationsatour

GitHub1

.

Weaimtoupdatetherelevantlatestpaperswithinitregularly.

KeywordsGenerativemodels.Diffusionmodels.Denoisingdiffusionmodels.Noiseconditionedscorenetworks.Score-basedmodels.Medicalimaging.Medicalapplications.Survey

2

Generator

True/

False

Decoder

Generator

SoftMax

Flow

DiffusionModelsforMedicalImageAnalysis:AComprehensiveSurvey

Discriminator

(a)

GAN

Encoder

(c)VAE

Discriminator

(b)Energy-basedModels

Inverse

(d)Flow-basedmodels

(e)

Diffusionmodels

Figure1:Inthisfigure,Wedisplaytherevolutionofgenerativemodelsandtheinsightsbehindthem.(

a

)GeneralAdversarialNetwork(GAN)[

1

]isanend-to-endpipelinethattrainsthegeneratorinanadversarialmannertogeneratesamplesthatthediscriminatoriscapableofdistinguishingfromtherealdatasample.(

b

)Energy-basedModel(EBM)[

2

],alsoknownasnon-normalizedprobabilisticmodels,trainsinthesamewayasGANswithtwomajormodifications.First,thediscriminatorlearnsaproperenergy-basedfunctionthatmapsthedatasampletoadistributionspace.Second,thegeneratorutilizesapriorinputtoenhancethesamplegenerationperformance.(

c

)VariationalAutoEncoder(VAE)[

3

]isastandalonenetworkthatfollowsaprojectionfromadatasampletoalow-dimensionallatentspacebytheencoderandgeneratesbysamplingfromitviaadecoderpath.(

d

)Normalizingflow(NF)[

4

]utilizesaninvertibleflowfunctiontotransforminputtolatentspaceandgeneratesampleswiththeinverseflowfunction.(

e

)DiffusionModelsinterminglethenoisewiththeinputinsuccessivestepsuntilitbecomesanoisedistributionbeforeapplyingareverseprocesstoneutralizethenoiseadditionineachstepinthesamplingprocedure.

1Introduction

Generativemodelingusingneuralnetworkshasbeenaformidableforceinthepastdecadeofdeeplearning.Sincetheiremergence,generativemodelshavemadeatremendousimpactinvariousdomainsrangingfromimages[

5

,

6

],audio[

7

,

8

],totext,[

9

]andpointclouds[

10

].Fromaprobabilisticmodelingviewpoint,thekeydefiningcharacteristicofagenerativemodelisthatitistrainedinsuchawaysothatitssamples~pθ-(comefromthesamedistributionasthetrainingdatadistribution,z~pd-z(.Thepioneeringenergy-basedmodelsachievethisbydefininganunnormalizedprobabilitydensityoverastatespace;however,thesemethodsrequireMarkovChainMonteCarlo(MCMC)samplingduringbothtrainingandinference,whichisaslowiterativeprocess[

11

].Followingtheunprecedentedsurgeofavailabledatasets,aswellasadvancesingeneraldeeplearningarchitectures,therehasbeenarevolutionaryparadigmshiftingenerativemodeling.Specifically,thethreemainstreamgenerativeframeworksinclude,namely,Generativeadversarialnetworks(GANs)[

1

],variationalautoencoders(VAEs)[

12

,

3

],andnormalizingflows[

13

](see

Figure1

).Generativemodelstypicallyentailkeyrequirementstobeadoptedinreal-worldproblems.Theserequirementsinclude(i)high-qualitysampling,(ii)modecoverageandsamplediversity,and(iii)fastexecutiontimeandcomputationallyinexpensivesampling[

14

](see

Figure2

).Generativemodelsoftenmakeaccommodationsbetweenthesecriteria.Specifically,GANsarecapableofgeneratinghigh-qualitysamplesrapidly,buttheyhavepoormodecoverageandarepronetolacksamplingdiversity.Conversely,VAEsandnormalizingflowssufferfromtheintrinsicpropertyoflowsamplequalitydespitebeingwitnessedincoveringdatamodes.GANsconsistoftwomodels:ageneratorandacritic(discriminator),whichcompetewitheachotherwhilesimultaneouslymakingeachotherstronger.Thegeneratortriestocapturethedistributionoftrueexamples,whilethediscriminator,whichistypicallyabinaryclassifier,estimatestheprobabilityofagivensamplecomingfromtherealdataset.Itworksasacriticandisoptimizedtorecognizethesyntheticsamplesfromtherealones.AcommonconcernwithGANsistheirtrainingdynamics

3

FastSampling

DiffusionModelsforMedicalImageAnalysis:AComprehensiveSurvey

whichhavebeenrecognizedasbeingunstable,resultingindeficienciessuchasmodecollapse,vanishinggradients,andconvergence[

15

].Therefore,animmenseinteresthasalsoinfluencedtheresearchdirectionofGANstoproposemoreefficientvariants[

16

,

17

].Variationalauto-encoders(VAEs)optimizethelog-likelihoodofthedatabymaximizingtheevidencelowerbound(ELBO).Despitetheremarkableachievements,thebehaviorofVariationalAutoencodersisstillfarfromsatisfactoryduetosometheoreticalandpracticalchallengessuchasbalancingissue[

18

]andvariablecollapsephenomenon[

19

].Aflow-basedgenerativemodelisconstructedbyasequenceofinvertibletransformations.Specifically,anormalizingflowtransformsasimpledistributionintoacomplexonebyapplyingasequenceofinvertibletransformationfunctionswhereonecanobtainthedesiredprobabilitydistributionforthefinaltargetvariableusingachangeofvariablestheorem.UnlikeGANsandVAEs,thesemodelsexplicitlylearnthedatadistribution;therefore,theirlossfunctionissimplythenegativelog-likelihood[

20

].Despitebeingfeasiblydesigned,thesegenerativemodelshavetheirspecificdrawbacks.SincetheLikelihood-basedmethodhastoconstructanormalizedprobabilitymodel,aspecifictypeofarchitecturemustbeused(AutoregressiveModel,FlowModel),orinthecaseofVAE,analternativeLosssuchasELBOisnotcalculateddirectlyforthegeneratedprobabilitydistribution.Incontrast,thelearningprocessofGANsisinherentlyunstableduetothenatureoftheadversariallossoftheGAN.Recently,diffusionmodels[

21

,

22

]haveemergedaspowerfulgenerativemodels,showcasingoneoftheleadingtopicsincomputervisionsothatresearchersandpractitionersalikemayfinditchallengingtokeeppacewiththerateofinnovation.Fundamentally,diffusionmodelsworkbydestroyingtrainingdatathroughthesuccessiveadditionofGaussiannoiseandthenlearningtorecoverthedatabyreversingthisnoisingprocess.

Todate,diffusionmodelshavebeenfoundtobeusefulinawideva-rietyofareas,rangingfromgenerativemodelingtaskssuchasimagegeneration[

23

],imagesuper-resolution[

24

],imageinpainting[

25

]todiscriminativetaskssuchasimagesegmentation[

26

],classification[

27

],andanomalydetection[

28

].Recently,themedicalimagingcommu-nityhaswitnessedexponentialgrowthinthenumberofdiffusion-basedtechniques(see

Figure4

).Asshownin

Figure4

,awealthofresearchisdedicatedtotheapplicationsofdiffusionmodelsindiversemedicalimagingscenarios.Thus,asurveyoftheexistingliteratureisbothbeneficialforthecommunityandquitetimely.Tothisend,thissurveysetsouttoprovideacomprehensiveoverviewoftherecentadvancesmadeandprovidesaholisticoverviewofthisclassofmodelsinmedicalimaging.Athoroughsearchoftherelevantliteraturerevealedthatwearethefirsttocoverthediffusion-basedmodelsexploitedinthemedicaldomain.Wehopethisworkwillpointoutnewpaths,providearoadmapforresearchers,andinspirefurtherinterestinthevisioncommunitytoleveragethepotentialofdiffusionmodelsinthemedicaldomain.Ourmajorcontributionsinclude:

●Thisisthefirstsurveypaperthatcomprehensivelycoversapplicationsofdiffusionmodelsinthemedicalimagingdomain.Specifically,wepresentacomprehensiveoverviewofallavailablerelevantpapers(untilOctober2022).

●Wedeviseamulti-perspectivecategorizationofdiffusionmodelsinthemedicalcommunity,providingasystematicaltaxonomyofresearchindiffusionmodelsandtheirapplications.Wedividetheexistingdiffusionmodelsintothreecategories:denoisingdiffusionprobabilisticmodels,noise-conditionedscorenetworks,andstochasticdifferentialequations.Moreover,wegrouptheapplicationsofdiffusionmodelsintosevencategories:anomalydetection,denoising,reconstruction,segmentation,image-to-imagetranslation,imagegeneration,andotherapplications.

Denoising

Diffusion

Models

Generative

AdversarialNetworks

High

Quality

Samples

Mode

Coverage/Diversity

,

VariationalAutoencoders

NormalizingFlows

Figure2:Generativelearningtrial[

14

].De-spitetheabilityofGANstoquicklygeneratehigh-fidelitysamples,theirmodecoverageislim-ited.Inaddition,VAEsandnormalizingflowshavebeenrevealedtohaveagreatdealofdiver-sity;however,theygenerallyhavepoorsamplingquality.Diffusionmodelshaveemergedtocom-pensateforthedeficiencyofVAEsandGANsbyshowingadequatemodecoverageandhigh-qualitysampling.Nevertheless,duetotheiritera-tivenature,whichcausesaslowsamplingprocess,theyarepracticallyexpensiveandrequiremoreimprovement.

●Wedonotrestrictourattentiontoapplicationandprovideanewtaxonomy(see

Figure4

)whereeachpaperisbroadlyclassifiedaccordingtotheproposedalgorithmalongwiththeorganconcernedandimagingmodality,respectively.

●Finally,wediscussthechallengesandopenissuesandidentifythenewtrendsraisingopenquestionsaboutthefuturedevelopmentofdiffusionmodelsinthemedicaldomaininbothalgorithmsandapplications.

PaperOrganization.In

Section2.1

,wepresentadetailedoverviewoftheconceptsandtheoreticalfoundationsbehinddiffusionmodels,coveringthreesub-categorieswithasimilarbaselinedefinition.

Sections3.1

to

3.7

comprehensivelycovertheapplicationsofdiffusionmodelsinseveralmedicalimagingtasks,asshownin

Figure3

,whereas

Section3.8

providesacomparativetask-specificoverviewofdifferentliteraturework.Weconcludethissurveybypinpointingfuturedirectionsandopenchallengesfacingdiffusionmodelsinthemedicalimagingdomainin

Section4

.

4

Numberofarticles

DiffusionModelsforMedicalImageAnalysis:AComprehensiveSurvey

econstructionImageGeneration

│egmentationOtherApplications

Image-to-ImageTranslation

11%

8%

11%

34%

16%

13%

AnomalyDetectionDenoising

8%

(a)

OpticalbasedX-raybased

63%

2%

9%

MRI

NuclearImaging

26%

(b)

16

14

12

10

8

6

4

2

0

AnomalyDetection

Denoising

Segmentation

Image-to-ImageTranslation

Reconstruction

ImageGeneration

OtherApplications

2021-Q3

2021-Q4

2022-Q1Quarters

2022-Q2

2022-Q3

(c)

Figure3:Thediagram(a)showstherelativeproportionofpublishedpaperscategorizedaccordingtotheirapplicationand(b)accordingtotheirimagingmodalities.(c)indicatesthenumberofdiffusion-basedresearchpaperspublishedinthemedicaldomain.Thegrowthrateperyearrevealstheimportanceofdiffusionmodelsforfuturework.

2Taxonomy

Generativeapproacheshaveundergonesignificantadvancesinmedicalimagingoverthepastfewdecades.Therefore,therehavebeennumeroussurveypaperspublishedondeepgenerativemodelsformedicalimaging[

29

,

30

,

31

].Someofthesepapersfocusonaspecificapplicationonly,whileothersconcentrateonaspecificimagemodality.Thereis,however,alackofcomprehensivesurveysontheapplicationsofdiffusionmodelsinmedicalimaging.Tothisend,inthissurvey,wedeviseamulti-perspectivevisionofdiffusionmodelsinwhichwediscussexistingliteraturebasedontheirapplicationsinthemedicaldomain.Nonetheless,wedonotrestrictourinteresttotheapplicationsbutdescribetheunderlyingworkingprinciples,theorgan,andtheimagingmodalityoftheproposedmethod.Wefurtherdiscusshowthisadditionalinformationcanhelpresearchersattempttoconsolidatetheliteratureacrossthespectrum.Abriefoutlookofourpaperisdepictedin

Figure4

.

2.1Algorithm

Thereareatleastthreesub-categoriesofdiffusionmodelsthatcomplywiththebaselinedefinitionofdiffusionmodels[

60

].First,therearedenoisingdiffusionprobabilisticmodels(DDPMs)[

21

,

22

],whichareaclassoflatentvariablemodelsinspiredbyconsiderationsfromnonequilibriumthermodynamics.Thesecondsub-categoryisrepresentedbynoise-conditionedscorenetworks(NCSNs)[

61

],whichisfundamentallybasedonestimatingthederivativeofthelogdensityfunctionoftheperturbeddatadistributionatdifferentnoiselevels.Stochasticdifferentialequations(SDEs)[

62

]formthethirdsub-category,whichencapsulatespreviousapproachesandcanbeviewedasageneralizationoverDDPMsandNCSNs.Wehereinafterelaborateonthedetailsofeachcategory.

2.1.1DenoisingDiffusionProbabilisticModels(DDPMs)

ForwardProcess.DDPMdefinestheforwarddiffusionprocessasaMarkovChainwhereGaussiannoiseisaddedinsuccessivestepstoobtainasetofnoisysamples.Considerg-z0(astheuncorrupted(original)datadistribution.Givenadatasamplez0华g-z0(,aforwardnoisingprocesspwhichproduceslatentz1throughzTbyaddingGaussiannoiseattimetisdefinedasfollows:

g-zt|zt—1(=八╱zt﹔^1_8t.zt—1,8t.t、,Ate{1,...,7}(1)

where7and81,...,8Te[〇,1(representthenumberofdiffusionstepsandthevariancescheduleacrossdiffusion

stepsrespectively.tistheidentitymatrixand八-z﹔m,7(representsthenormaldistributionofmeanmandcovariance7.

Consideringat=1_8tandt=!=0as,onecandirectlysampleanarbitrarystepofthenoisedlatentconditionedon

theinputz0asfollows:

g-xt|x0(=N╱xt﹔^tx0,-1_t(t、

(2)

xt=^tx0十^1_al9(3)

5

Modality:PET

Modality:CT/MRI

Organ:Brain

1.MT-Diffusion

Organ:Multi-organ

Algorithm:DDPM

Algorithm:DDPM/SDE

Modality:OCT

Modality:MRI

16.DenoOCT-DDPM

Organ:Eye

2.UMM-CSGM

Organ:Brain

Algorithm:DDPM

Algorithm:SDE

Modality:MRI

Organ:Brain/Abdominal

3.SynDiff

Organ:Brain

Algorithm:DDPM

Modality:Microscopic

Modality:CT/MRI

Organ:Giloma

4.SIM-SGM

Organ:Multi-organ/Brain

Algorithm:SDE

Modality:MRI

19.DISPR

Organ:BloodCell

5.MC-DDPM

Organ:Knee

Algorithm:DDPM

Modality:MRI

Modality:MRI

Organ:Brain

6.Score-MRI

Organ:Knee

Algorithm:DDPM

Modality:PET

Modality:MRI

Organ:Heart

7.DiffuseRecon

Organ:Knee

Algorithm:DDPM

Algorithm:DDPM

Reconstruction

Modality:MRI

Modality:MRI

8.AdaDiff

Organ:Brain

Organ:Brain

Algorithm:DDPM

Modality:MRI

Organ:Brain

9.MRI-DDMC

Organ:Brain

Algorithm:DDPM

Algorithm:SDE

Modality:MRI

Modality:MRI

Organ:Knee/Brain

10.Self-Score

Organ:Brain

Algorithm:DDPM

Modality:MRI/X-ray

Organ:Multi-organ

11.MCG

Organ:Brain/Chest

Algorithm:DDPM

Modality:Microscopic

Organ:Brain

Organ:Skin

26.Multi-scaleDDAM

Algorithm:DDPM

Modality:X-ray

Segmentation

13.DARL

Organ:Heart/Eye

Organ:Aminoacids

Algorithm:DDPM

Algorithm:DDPM

Modality:MRI

Modality:MRI

Organ:Brain

14.IISE

Organ:Knee/Liver

Algorithm:DDPM

Organ:Brain

DiffusionModelsforMedicalImageAnalysis:AComprehensiveSurvey

15.PET-DDPM

Denoising

Image-to-ImageTranslation

Modality:MRI/CT

17.BrainGen

Algorithm:DDPM

18.MFDPM

Algorithm:DDPM

Modality:Microscopic

ImageGeneration

Algorithm:DDPM

20.3D-DDPM

Algorithm:SDE

21.DDM

DiffusionModels

Taxonomy

22.AnoDDPM

Algorithm:DDPM

Modality:MRI

23.CDPM

AnomalyDetection

24.IITM-Diffusion

Algorithm:NCSN

Modality:CT

25.AnoDDIM

Algorithm:SDE

Modality:MRI

12.brainSPADE

Algorithm:DDPM

Modality:X-ray

crystallography

27.SMCDiff

OtherApplications

28.R2D2+

Algorithm:SDE

Modality:CT/MRI

29.BAnoDDPM

Algorithm:DDPM

Figure4:Theproposedtaxonomyfordiffusion-basedmedicalimageanalysisresearchisbuiltonsevensub-fields:I)Image-to-ImageTranslation,II)MedicalImageReconstruction,III)ImageSegmentation,IV)MedicalImageDenoising,V)ImageGeneration,VI)AnomalyDetectionandVII)multi-disciplinaryapplications,namedOtherApplications.Forthesakeofbrevity,weutilizetheprefixnumbersinthepaper’snameinascendingorderanddenotethereferenceforeachstudyas

follows:1.[

32

],2.[

33

],3.[

34

],4.[

35

],5.[

36

],6.[

37

],7.[

38

],8.[

39

],9.[

40

],10.[

41

],11.[

42

],12.[

43

],13.[

44

],14.[

45

],15.[

46

],16.[

47

],17.[

48

],18.[

49

],19.[

50

],20.[

51

],21.[

52

],22.[

53

],23.[

54

],24.[

55

],25.[

28

],26.[

56

],27.[

57

],28.[

58

],29.[

59

].

6

DiffusionModelsforMedicalImageAnalysis:AComprehensiveSurvey

ReverseProcess.Leveragingtheabovedefinitions,wecanapproximateareverseprocesstogetasamplefromg(z0).Tothisend,wecanparameterizethisreverseprocessbystartingatp(xT)=c(xT;φ,t)asfollows:

T

pθ(x0:T)=p(xT)(pθ(xt—1lxt)

t=1

pθ(xt—1lxt)=c(xt—1;mθ(xt,t),θ(xt,t))

(4)

(5)

Totrainthismodelsuchthatp(z0)learnsthetruedatadistributiong(z0),wecanoptimizethefollowingvariationalboundonnegativelog-likelihood:

E[_logpθ(x0)]<Bq┌_log┐

=Eq_logp(xT)_log(6)

=_LVL.B

Hoetal.[

22

]founditbetternottodirectlyparameterizemθ(zt,t)asaneuralnetwork,butinsteadtotrainamodel9θ(zt,t)topredict9.Hence,byreparameterizing

Equation(6)

,theyproposedasimplifiedobjectiveasfollows:

Lsimple=Et,x0,e)|9_9θ(zt,t)|2」(7)

wheretheauthorsdrawaconnectionbetweenthelossin

Equation(6)

togenerativescorenetworksinSongetal.[

61

].

2.1.2NoiseConditionedScoreNetworks(NCSNs)

Thescorefunctionofsomedatadistributionp(z)isdefinedasthegradientofthelogdensitywithrespecttotheinput,Vxlogp(z).Toestimatethisscorefunction,onecantrainasharedneuralnetworkwithscorematching.Specifically,thescorenetworks9isaneuralnetworkparameterizedby9,whichistrainedtoapproximatethescoreofp(z)(sθ(z)sVxlogp(z))byminimizingthefollowingobjective:

Ex~p(x)|sθ(z)_Vxlogp(z)|(8)

However,duetothecomputationalburdenofcalculatingVxlogp(z),scorematchingisnotscalabletodeepnetworksandhighdimensionaldata.Tomitigatethisproblem,theauthorsof[

61

]proposetoexploitdenoisingscorematching[

63

]andslicedscorematching[

64

].Moreover,Songetal.[

61

]highlightmajorchallengesthatpreventanaiveapplicationofscore-basedgenerativemodelinginrealdata.Thekeychallengeisthefactthattheestimatedscorefunctionsareinaccurateinlow-densityregionssincedataintherealworldtendtoconcentrateonlow-dimensionalmanifoldsembeddedinahigh-dimensionalspace(themanifoldhypothesis).TheauthorsdemonstratethattheseproblemscanbeaddressedbyperturbingthedatawithGaussiannoiseatdifferentscales,asitmakesthedatadistributionmoreamenabletoscore-basedgenerativemodeling.Theyproposetoestimatethescorecorrespondingtoallnoiselevelsbytrainingasinglenoise-conditionedscorenetwork(NCSN).TheyderiveVxlog(pσt(z))asVxtlogpσt(ztlz)=_xxbychoosingthenoisedistributiontobepσt(ztlz)=c╱zt;z,7.t、whereztisanoisedversionofz.Thus,foragivensequenceofGaussiannoisescales71<72<...<7T,

Equation(8)

canbewrittenas:

u(7t)Ep(x)Ext~pσt(xt|x)sθ(zt,7t)+(9)

whereu(7t)isaweightingfunction.Theinferenceisdoneusinganiterativeprocedurecalled"Langevindynamics"[

65

,

66

].LangevindynamicsdesignanMCMCproceduretosamplefromadistributionp(x)usingonlyitsscorefunctionVxlogp(x).Specifically,tomovefromarandomsamplex0~π(x)towardssamplesfromp(x),ititeratesthefollowing:

zi=zi—1+2Vxlogp(z)+′e.wi(10)

e

7

■x_f-x,t(■t十g-t(■w(11)

Figure5:TensynthetichistopathologyimagesgeneratedbyMFDPM[

49

].

wherewi~c-〇,t(,andi∈u1,...,N}.Whene二〇andN二o,xisamplesobtainedfromthisprocedureconvergetoasamplefromp-x(.Theauthorsof[

61

]proposeamodificationofthisalgorithmnomenclatureastheannealedLangevindynamicsalgorithmsincethenoisescale7idecreases(anneals)graduallyovertimetomitigatesomepitfallsandfailuremodesofscorematching[

67

].

2.1.3StochasticDifferentialEquations(SD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论