




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年湖北省随州市普通高校对口单招数学自考模拟考试(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.已知平面向量a=(1,3),b(-1,1),则ab=A.(0,4)B.(-1,3)C.0D.2
2.过点A(2,1),B(3,2)直线方程为()A.x+y-1=0B.x-y-1=0C.x+y+l=0D.x-y+l=0
3.等差数列中,a1=3,a100=36,则a3+a98=()A.42B.39C.38D.36
4.下列命题错误的是()A.对于两个向量a,b(a≠0),如果有一个实数,使b=a,则a与b共线
B.若|a|=|b|,则a=b
C.若a,b为两个单位向量,则a·a=b·b
D.若a⊥b,则a·b=0
5.A.B.C.D.
6.从1,2,3,4这4个数中任取两个数,则取出的两数之和是奇数的概率是()A.1/5B.1/5C.2/5D.2/3
7.已知a=(1,2),则2a=()A.(1,2)B.(2,4)C.(2,1)D.(4,2)
8.下列四组函数中表示同一函数的是()A.y=x与y=
B.y=2lnx与y=lnx2
C.y=sinx与y=cos()
D.y=cos(2π-x)与y=sin(π-x)
9.过点M(2,1)的直线与x轴交与P点,与y轴交与交与Q点,且|MP|=|MQ|,则此直线方程为()A.x-2y+3=0B.2x-y-3=0C.2x+y-5=0D.x+2y-4=0
10.下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是()A.f(x)=1/x2
B.f(x)=x2+1
C.f(x)=x3
D.f(x)-2-x
二、填空题(10题)11.
12.某校有老师200名,男学生1200名,女学生1000名,现用分层抽样的方法从所有师生中抽取一个容量为240的样本,则从女生中抽取的人数为______.
13.设A=(-2,3),b=(-4,2),则|a-b|=
。
14.10lg2=
。
15.
16.要使的定义域为一切实数,则k的取值范围_____.
17.化简
18.已知直线l1:ax-y+2a+1=0和直线l2:2x-(a-l)y+2=0(a∈R)则l1⊥l2的充要条件是a=______.
19.函数f(x)=sin2x-cos2x的最小正周期是_____.
20.
三、计算题(5题)21.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
22.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
23.解不等式4<|1-3x|<7
24.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
25.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
四、简答题(10题)26.已知A,B分别是椭圆的左右两个焦点,o为坐标的原点,点P(-1,)在椭圆上,线段PB与y轴的焦点M为线段PB的中心点,求椭圆的标准方程
27.等差数列的前n项和为Sn,已知a10=30,a20=50。(1)求通项公式an。(2)若Sn=242,求n。
28.己知边长为a的正方形ABCD,PA丄底面ABCD,PA=a,求证,PC丄BD
29.求经过点P(2,-3)且横纵截距相等的直线方程
30.化简
31.已知等差数列{an},a2=9,a5=21(1)求{an}的通项公式;(2)令bn=2n求数列{bn}的前n项和Sn.
32.求k为何值时,二次函数的图像与x轴(1)有2个不同的交点(2)只有1个交点(3)没有交点
33.由三个正数组成的等比数列,他们的倒数和是,求这三个数
34.在1,2,3三个数字组成无重复数字的所有三位数中,随机抽取一个数,求:(1)此三位数是偶数的概率;(2)此三位数中奇数相邻的概率.
35.数列的前n项和Sn,且求(1)a2,a3,a4的值及数列的通项公式(2)a2+a4+a6++a2n的值
五、解答题(10题)36.如图,一辆汽车在一条水平的公路上向正西行驶,在A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,求此山的高度CD。
37.如图,AB是⊙O的直径,P是⊙O所在平面外一点,PA垂直于⊙O所在的平面,且PA=AB=10,设点C为⊙O上异于A,B的任意一点.(1)求证:BC⊥平面PAC;(2)若AC=6,求三棱锥C-PAB的体积.
38.
39.已知函数(1)求f(x)的最小正周期及其最大值;(2)求f(x)的单调递增区间.
40.如图,在三棱锥A-BCD中,AB丄平面BCD,BC丄BD,BC=3,BD=4,直线AD与平面BCD所成的角为45°点E,F分别是AC,AD的中点.(1)求证:EF//平面BCD;(2)求三棱锥A-BCD的体积.
41.设椭圆x2/a2+y2/b2的方程为点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|直线OM的斜率为.(1)求E的离心率e(2)设点C的坐标为(0,-b),N为线段AC的中点,证明:MN丄AB
42.已知等差数列{an}的前72项和为Sn,a5=8,S3=6.(1)求数列{an}的通项公式;(2)若数列{an}的前k项和Sk=72,求k的值.
43.设函数f(x)=x3-3ax+b(a≠0).(1)若曲线y=f(x)在点(2,f(x))处与直线y=8相切,求a,b的值;(2)求函数f(x)的单调区间与极值点.
44.如图,ABCD-A1B1C1D1为长方体.(1)求证:B1D1//平面BC1D;(2)若BC=CC1,,求直线BC1与平面ABCD所成角的大小.
45.如图,在正方体ABCD—A1B1C1D1中,E,F分别为棱AD,AB的中点.(1)求证:EF//平面CB1D1;(2)求证:平面CAA1C1丄平面CB1D1
六、单选题(0题)46.“没有公共点”是“两条直线异面”的()A.充分而不必要条件B.充分必要条件C.必要而不充分条件D.既不充分也不必要条件
参考答案
1.D
2.B直线的两点式方程.点代入验证方程.
3.B
4.B向量包括长度和方向,模相等方向不一定相同,所以B错误。
5.C
6.D古典概型的概率.任意取到两个数的方法有6种:1,2;1,3;1,4;2,3;2,4;3,4;,满足题意的有4种:1,2;1,4;2,3;3,4;,则所求的概率为4/6=2/3
7.B平面向量的线性运算.=2(1,2)=(2,4).
8.Ccos(3π/2+x)=cos(π/2-x)=sinx,所以选项C表示同一函数。
9.D
10.A函数的奇偶性,单调性.因为:y=x2在(-∞,0)上是单调递减的,故y=1/x2在(-∞,0)上是单调递增的,又y=1/x2为偶函数,故A对;y=x2+1在(-∞,0)上是单调递减的,故B错;y=x3为奇函数,故C错;y=2-x为非奇非偶函数,故D错.
11.60m
12.100分层抽样方法.各层之比为200:1200:1000=1:6:5推出从女生中抽取的人数240×5/12=100.
13.
。a-b=(2,1),所以|a-b|=
14.lg102410lg2=lg1024
15.外心
16.-1≤k<3
17.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2
18.1/3充要条件及直线的斜率.l1⊥l2→2a/a-1=-1→(2a)+(a-1)=0,解得A=1/3
19.πf(x)=2(1/2sin2x-1/2cos2x)=2sin(2x-π/4),因此最小正周期为π。
20.-1/16
21.
22.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
23.
24.
25.
26.点M是线段PB的中点又∵OM丄AB,∴PA丄AB则c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此椭圆的标准方程为
27.
28.证明:连接ACPA⊥平面ABCD,PC是斜线,BD⊥ACPC⊥BD(三垂线定理)
29.设所求直线方程为y=kx+b由题意可知-3=2k+b,b=解得,时,b=0或k=-1时,b=-1∴所求直线为
30.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2
31.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)
∴数列为首项b1=32,q=16的等比数列
32.∵△(1)当△>0时,又两个不同交点(2)当A=0时,只有一个交点(3)当△<0时,没有交点
33.设等比数列的三个正数为,a,aq由题意得解得,a=4,q=1或q=解得这三个数为1,4,16或16,4,1
34.1,2,3三个数字组成无重复数字的所有三位数共有(1)其中偶数有,故所求概率为(2)其中奇数相邻的三位数有个故所求概率为
35.
36.
37.(1)∵PA垂直于⊙O所在的平面,BC包含于⊙O所在的平面,∴PA⊥BC,又∵AB为⊙O的直径,C为⊙O上异于A、B的-点,AC⊥BC,且PA∩AC=A,∴BC⊥平面PAC.(2)由(1)知△ABC为直角三角形且∠ACB=90°,又AC=6,AB=10,∴又∵PA=10,PA⊥AC,∴S△PAC=1/2PA.AC=1/2×10×6=30.∴VC-PAB=1/3×SPAC×BC=1/3×30×8=80
38.
39.
的单调递增区间为[-π/12+kπ,5π/12+kπ]
40.
41.
42.(1)设等差数列{an}的公差为d由题
43.(1)f(x)=3x2-3a,∵曲线:y=f(x)在点(2,f(x))处与直线y=8相切,
44.(1)ABCD-A1B1C1D1为长方体,所以B1D1//BD,又BD包含于平面BC1D,B1D1不包含BC1D,所以B1D1//平面BC1D(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 63522-49:2025 EN-FR Electrical relays - Tests and measurements - Part 49: Long term stability of sealing
- 2025年营养与食品卫生考试题及答案
- 2025年资源环境管理与评估考试试卷及答案
- 2025年网络舆情监测与应对策略考试题及答案
- 2025年统计与数据分析师资格考试试题及答案
- 2025年科学决策与领导能力综合评估试题及答案
- 2025年PCB制板项目建议书
- 骨科专科护理规范与实务
- 骨科循证护理体系构建与实践路径
- 2025年连续波测距仪合作协议书
- 雕像迁移 施工方案
- 2025年湖北省新华书店(集团)有限公司招聘笔试参考题库含答案解析
- 外墙清洗施工方案
- 燃气公司新员工入职三级安全教育培训
- 2024年山东枣庄事业单位招聘笔试真题
- 太阳能路灯采购安装方案投标文件(技术方案)
- 黑龙江商业职业学院《生活中的科学》2023-2024学年第二学期期末试卷
- 2025年中国铁路沈阳局集团有限公司招聘笔试参考题库含答案解析
- 水泥搅拌桩培训
- 电网工程设备材料信息参考价(2024年第四季度)
- 2025年专利使用合同范本
评论
0/150
提交评论