




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学中的整体思想第一页,共二十九页,2022年,8月28日整体思想概述:
整体思想方法是指用“集成”的眼光,把某些式子或图形看成一个整体,把握已知和所求之间的关联,进行有目的、有意识的整体处理来解决问题的方法.从整体出发的处理方法,体现了一种着眼全局、通盘考虑的整体观念.中学数学中,整体思想的应用广泛.运用整体思想方法的三部曲:(1)从整体出发,高瞻远瞩地统帅局部;(2)通过对局部的研究,酝酿总体解决的方案;(3)回到整体,实现解决整个问题的总目标.整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用,整体代入、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中的具体运用。第二页,共二十九页,2022年,8月28日知识点中的整体思想第五章数量与数量之间的关系第六章整式的加减第九章二元一次方程组第十章整式乘法与因式分解第十一章三角形第十四章分式第十五章轴对称第十六章勾股定理第十七章实数第二十二章四边形第二十五章一次函数第二十八章一元二次方程第二十九章相似形第三页,共二十九页,2022年,8月28日
整体思想的具体分析第五章数量与数量之间的关系1、求含绝对值的式子的值或解含绝对值的方程
例:(1)已知,求的值。分析:应把x+1和x-2分别看做一个整体,由已知条件讨论出x+1和x-2的正负,从而求出原式的值;
(2)解方程|3x-2|=1.
分析:同样要把3x-2看做一个整体,因为它的绝对值等于1,所以3x-2=±1,从而可以求出方程的解.
第四页,共二十九页,2022年,8月28日2、求代数式的值----整体代入法
(1)代数式+x+3的值为7,则代数式2+2x-3的值为___________
分析:若用常规方法求代数式的值,必须由条件求出x的值,而目前并不能由+x+3=7求出x的值,但可以考虑用整体代入处理,把+x=7-3=4整体代入求值,这样将十分简捷。
解:因为+x+3=7,所以+x=4,所以2+2x-3=2(+x)-3=2×4-3=5
第五页,共二十九页,2022年,8月28日(2)若x+2y+3z=10,4x+3y+2z=15,则x+y+z=__________
分析:若想由条件求出的值,再代入代数式计算,则无法求出结果,若用“整体代入”法尝试,将会出现柳暗花明又一村的现象。
解:因为x+2y+3z=10,4x+3y+2z=15所以(x+2y+3z)+(4x+3y+2z)=25所以5x+5y+5z=25所以x+y+z=5第六页,共二十九页,2022年,8月28日(3)如果+x-1=0,那么代数式+2-7的值。分析:由题可知,若采用一般方法解方程求,目前来说不可能且十分繁琐,但通过观察发现,故可把看作一个整体,由条件式给出的值,尔后整体代入即可.解:由题意,得+x=1+2-7=++-7=x(+x)+-7=x+-7=1-7=-6第七页,共二十九页,2022年,8月28日第六章整式的加减
一、整体代入法已知x=2m+1,y=1-2m,计算的值。[思路分析]本题注意到x+y,x-y的值都很简单,而原式用(x+y),(x-y)表示也很容易,用整体代入法.解:∵x=2m+1,y=1-2m.∴x+y=2,x-y=4m.∴原式=+(x+y)(x-y)=+2×4m=16+8m.
[规律总结]把计算式中的某部分看作整体或先作适当变形转化,再整体代入,是经常使用的一种方法.第八页,共二十九页,2022年,8月28日二、整体转化法计算(3a+2b-c+5)(3a-2b+c+5)[思路分析]将(3a+5)看成相同的项,将(2b-c)看成相反的项,问题就转化平方差公式,计算起来就方便了.解:原式=
[规律总结]将整式运算中的相同(或相反)的部分作为整体进行转化,可使问题简易获解.第九页,共二十九页,2022年,8月28日三、整体加减法
已知求的值.[思路分析]所给条件式中的两个未知数,难以求出各自的值后代入求值,因此可通过整体加减的方法求出待求式的值.解:将已知两式左右两边分别相加,两边再同乘以2得52.[规律总结]对所给条件式难以或无法直接求出各自的值,则可以通过变换条件式,整体求出待求式的值.第十页,共二十九页,2022年,8月28日四、整体合并法
计算4(x+y)+3(x+y)+2(x-y)-3(x-y).[思路分析]本题按照常规解法是先去括号,再合并同类项.但这样做比较麻烦,若把x+y,x-y各看作一个“整体”先行合并,再去括号,就方便快捷多了.解:原式=(4+3)(x+y)+(2-3)(x-y)=7(x+y)-(x-y)=7x+7y-x+y=6x+8y.[规律总结]括号内所含内容相同的多项式运算,可将括号看作一个“整体”先行合并,再去括号,可简化运算.第十一页,共二十九页,2022年,8月28日五、整体去括号
化简
[思路分析]受一个“-”号影响,应变号;受两个“-”号影响,不变号;[规律总结]在含有多重括号的运算式中,括号里的项是否变号,只与该项以及该项所在的各层括号前面的“-”号有关,而与其前面的“+”号无关.因此只要从外向里逐层确定影响该项的“-”号的个数就可整体去括号.当某项受奇数个“-”号影响时该项变号,受偶数个“-”号影响时该项不变号.第十二页,共二十九页,2022年,8月28日第九章二元一次方程组一、巧用“整体思想”妙解方程组---整体代入或整体加减例1、解方程组:析解:由①得把看成一个整体,代入②得到解得,再代入①得到:从而得到原方程组的解为:第十三页,共二十九页,2022年,8月28日例2、解方程组:解析:此例若用“正宗”的代入或加减,往往会使解题过程复杂冗长,运算量大,稍有疏忽便会前功尽弃,若能根据方程组的具体特点,灵活运用“整体思想”这一方法与技巧,可使问题化繁为简,迅捷获解。先把方程②化简整理得,③注意到方程组的常数项之间的关系,将方程①整体代入③,消去常数2800,得到之间的倍数关系,从而很容易求出方程组的解。将方程①整体代入③,消去常数2800,得到整理代入①消去x得到:=350所以原方程组的解为:=2450=350第十四页,共二十九页,2022年,8月28日例3、解方程组
解析:此题数字较大,若按常规加减,运算量大,费时费功,仔细观察方程组的未知数的系数具有对称轮换的特征,可采用整体相加减,使系数绝对值减小,从而可以得到一个同解的简易方程组,新颖别致,简捷明快。第十五页,共二十九页,2022年,8月28日二、整体思想在应用题中的应用有甲、乙、丙三种商品,若甲购得3件、乙购得7件、丙购得1件共需315元;若购得甲4件、乙10件、丙1件共需420元,现购得甲、乙、丙各1件,共需多少元?
解:设购甲、乙、丙1件分别需要x元、y元、z元,由题意得:3x+7y+z=3154x+10y+z=420此题方程个数少于未知数,若按常规思考,则望题兴叹,不可能把x、y、z都出来,但深思慎虑,原来题目要求的只是x+y+z的值,并非要把x、y、z分别求出来,于是对方程组作如下变形①×3-②×2,得到x+y+z=145本例若直接设未知数,很难列出等量关系,故采用间接设法,它虽改变了解题的角度,但体现了“整体处理”的思想。
第十六页,共二十九页,2022年,8月28日第十章整式乘法与因式分解一、因式分解要注意整体思想方法的运用分解因式:1、x(m-x)(m-y)-m(x-m)(y-m)=x(m-x)(m-y)-m(m-x)(m-y)=(m-x)(m-y)(x-m)=-(m-y)2、-4(x-y-1).分析:所给的多项式没有公因式可提,也不能直接利用公式法分解.观察其结构特点,可视(x-y)为一个整体,将-4(x-y-1)整理为-4(x-y)+4后能用完全平方公式分解.第十七页,共二十九页,2022年,8月28日二、整式乘法中的整体思想已知求的值。
分析:这道题从已知条件出发都求不出x,y,m的值,但整体利用己知条件就迎刃而解了.由幂的逆运算可知:
第十八页,共二十九页,2022年,8月28日第十一章三角形1、如图,∠DBC=2∠ABD,∠DCB=2∠ACD,试说明∠A与∠D之间的关系.评注:本例应用整体思想得到∠A与∠D之间的关系,主要应用三角形的内角,三角形内角和定理结合整体思想进行说理.第十九页,共二十九页,2022年,8月28日
第十四章分式
整体代入在分式化简求值中的妙用
1、已知求下列各式的值:
⑴
⑵
第二十页,共二十九页,2022年,8月28日2、已知,求
的值.
分析:把看作一个整体,先整理再做。
=第二十一页,共二十九页,2022年,8月28日第十五章轴对称轴对称和轴对称图形的联系体现了整体思想。把成轴对称的两个图形看成一个整体就是轴对称图形。例:观察下图中各组图形,其中成轴对称的为________(只写序号)。
第二十二页,共二十九页,2022年,8月28日第十六章勾股定理
利用勾股定理求面积中的整体思想例:如图,已知Rt△ABC的周长为2+,其中斜边为2,求这个三角形的面积。
分析:若要直接求出a与b的值,要用二次方程求解较繁。但由联想到运用整体思想(将ab视为一个整体),问题便可顺利获解。解:在Rt△ABC中,根据勾股定理,得即又由已知得所以解得所以第二十三页,共二十九页,2022年,8月28日第十七章实数观察全局,就是从全局上对已知条件进行观察分析,综合考察,从而得出解决问题途径。例:若实数满足则从全局看,式子要有意义,实数需满足,解得x=,进一步得到y=2。第二十四页,共二十九页,2022年,8月28日第二十二章四边形整体思想就是根据问题的整体结构特征,把一组图形视为一个整体去观察、分析、研究问题的一种方法,运用它往往可以起到化繁为简的作用。例:如图,菱形ABCD的面积为8,则阴影部分的面积为。第二十五页,共二十九页,2022年,8月28日第二十五章一次函数一次函数中把一些相关量做为整体来处理的思想。例:已知y与x+1成正比例,如果x=4时,y=2,那么x=3时,y=____.分析:把x+1当作整体,设函数解析式为y=k(x+1),在代入x、y的值,求k.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年湖北生态工程职业技术学院单招职业适应性测试题库完整版
- Unit+2+Success+Writing+Workshop+ Reading+Club+知识点及默写清单 高中英语北师大版(2019)选择性必修第一册
- 桌椅供货合同范本
- 豪猪购销合同范本
- 注资入股协议合同范本
- 农村地基转租合同范本
- 2025-2030年中国环丙氟哌酸市场发展现状及前景趋势分析报告
- 2025-2030年中国煤矿钻头市场运行状况规划研究报告
- 2025-2030年中国炼油市场运营趋势及未来发展前景分析报告
- 2025-2030年中国港口设备市场现状调研规划研究报告
- 拉线的制作详细
- 律师报价函(诉讼)
- 新生儿沐浴评分标准
- 潜水作业指导书
- (完整版)设计管理
- 感谢对手阅读附答案
- 材料性能学(第2版)付华课件0-绪论-材料性能学
- GB/T 8012-2000铸造锡铅焊料
- 第一课 第一章 AutoCAD 2012概述入门
- 2023年湖南省普通高中学业水平考试数学版含答案
- 超市店长考核方案(实例)
评论
0/150
提交评论