




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年山东省德州市普通高校对口单招数学自考预测试题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.若x2-ax+b<0的解集为(1,2),则a+b=()A.5B.-5C.1D.-1
2.过点M(2,1)的直线与x轴交与P点,与y轴交与交与Q点,且|MP|=|MQ|,则此直线方程为()A.x-2y+3=0B.2x-y-3=0C.2x+y-5=0D.x+2y-4=0
3.若函数y=log2(x+a)的反函数的图像经过点P(-1,0),则a的值为()A.-2
B.2
C.
D.
4.6人站成一排,甲乙两人之间必须有2人,不同的站法有()A.144种B.72种C.96种D.84种
5.设一直线过点(2,3)且它在坐标轴上的截距和为10,则直线方程为()A.
B.
C.
D.
6.A.
B.
C.
7.已知展开式前三项的系数成等差数列,则n为()A.lB.8C.1或8D.都不是
8.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台
9.(X-2)6的展开式中X2的系数是D()A.96B.-240C.-96D.240
10.A.B.C.D.
11.若a0.6<a<a0.4,则a的取值范围为()</aA.a>1B.0<a<1C.a>0D.无法确定
12.已知向量a=(1,3)与b=(x,9)共线,则实数x=()A.2B.-2C.-3D.3
13.的展开式中,常数项是()A.6B.-6C.4D.-4
14.从200个零件中抽测了其中40个零件的长度,下列说法正确的是()A.总体是200个零件B.个体是每一个零件C.样本是40个零件D.总体是200个零件的长度
15.函数f(x)=的定义域是()A.(0,+∞)B.[0,+∞)C.(0,2)D.R
16.若函数f(x-)=x2+,则f(x+1)等于()A.(x+1)2+
B.(x-)2+
C.(x+1)2+2
D.(x+1)2+1
17.过点A(2,1),B(3,2)直线方程为()A.x+y-1=0B.x-y-1=0C.x+y+l=0D.x-y+l=0
18.若f(x)=logax(a>0且a≠1)的图像与g(x)=logbx(b>0,b≠1)的关于x轴对称,则下列正确的是()A.a>bB.a=bC.a<bD.AB=1
19.直线以互相平行的一个充分条件为()A.以都平行于同一个平面
B.与同一平面所成角相等
C.平行于所在平面
D.都垂直于同一平面
20.设a>b>0,c<0,则下列不等式中成立的是A.ac>bc
B.
C.
D.
二、填空题(10题)21.
22.已知_____.
23.若lgx=-1,则x=______.
24.
25.若f(x-1)=x2-2x+3,则f(x)=
。
26.若展开式中各项系数的和为128,则展开式中x2项的系数为_____.
27.
28.在:Rt△ABC中,已知C=90°,c=,b=,则B=_____.
29.方程扩4x-3×2x-4=0的根为______.
30.
三、计算题(10题)31.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
32.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
33.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
34.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
35.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
36.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。
37.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
38.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
39.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
40.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
四、简答题(10题)41.已知双曲线C的方程为,离心率,顶点到渐近线的距离为,求双曲线C的方程
42.三个数a,b,c成等差数列,公差为3,又a,b+1,c+6成等比数列,求a,b,c。
43.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.
44.已知的值
45.组成等差数列的三个正数的和等于15,并且这三个数列分别加上1、3、5后又成等比数列,求这三个数
46.已知函数(1)求函数f(x)的最小正周期及最值(2)令判断函数g(x)的奇偶性,并说明理由
47.某商场经销某种商品,顾客可采用一次性付款或分期付款购买,根据以往资料统计,顾客采用一次性付款的概率是0.6,求3为顾客中至少有1为采用一次性付款的概率。
48.设拋物线y2=4x与直线y=2x+b相交A,B于两点,弦AB长,求b的值
49.在ABC中,AC丄BC,ABC=45°,D是BC上的点且ADC=60°,BD=20,求AC的长
50.已知函数:,求x的取值范围。
五、解答题(10题)51.
52.已知函数f(x)=2sin(x-π/3).(1)写出函数f(x)的周期;(2)将函数f(x)图象上所有的点向左平移π/3个单位,得到函数g(x)的图象,写出函数g(x)的表达式,并判断函数g(x)的奇偶性.
53.己知sin(θ+α)=sin(θ+β),求证:
54.求函数f(x)=x3-3x2-9x+5的单调区间,极值.
55.已知函数f(x)=x3-3x2-9x+1.(1)求函数f(x)的单调区间.(2)若f(x)-2a+1≥0对Vx∈[-2,4]恒成立,求实数a的取值范围.
56.证明上是增函数
57.
58.已知数列{an}是首项和公差相等的等差数列,其前n项和为Sn,且S10=55.(1)求an和Sn(2)设=bn=1/Sn,数列{bn}的前n项和为T=n,求Tn的取值范围.
59.如图,AB是⊙O的直径,P是⊙O所在平面外一点,PA垂直于⊙O所在的平面,且PA=AB=10,设点C为⊙O上异于A,B的任意一点.(1)求证:BC⊥平面PAC;(2)若AC=6,求三棱锥C-PAB的体积.
60.设函数f(x)=x3-3ax+b(a≠0).(1)若曲线y=f(x)在点(2,f(x))处与直线y=8相切,求a,b的值;(2)求函数f(x)的单调区间与极值点.
六、单选题(0题)61.若f(x)=4log2x+2,则f⑵+f⑷+f(8)=()A.12B.24C.30D.48
参考答案
1.A一元二次不等式与一元二次方程的应用,根与系数的关系的应用问题.即方程x2-ax+b=0的两根为1,2.由根与系数关系得解得a=3.所以a+b=5.
2.D
3.D
4.A6人站成一排,甲乙两人之间必须有2人,可以先从其余4人中选出2人,安排在甲乙两人之间,在与其余两人进行排列,所以不同站法共有种。
5.D
6.C
7.B由题可知,,即n2-9n+8=0,解得n=8,n=-1(舍去)。
8.D空间几何体的三视图.从俯视图可看出该几何体上下底面为半径不等的圆,正视图与侧视图为等腰梯形,故此几何体为圆台.
9.D
10.A
11.B已知函数是指数函数,当a在(0,1)范围内时函数单调递减,所以选B。
12.D
13.A
14.D总体,样本,个体,容量的概念.总体是200个零件的长度,个体是每一零件的长度,样本是40个零件的长度,样本容量是40.
15.Bx是y的算术平方根,因此定义域为B。
16.C由题可知,f(0)=2=f(-1+1),因此x=-1时,函数值为2,所以正确答案为C。
17.B直线的两点式方程.点代入验证方程.
18.D
19.D根据直线与平面垂直的性质定理,D正确。
20.B
21.-2i
22.-1,
23.1/10对数的运算.x=10-1=1/10
24.-1
25.
26.-189,
27.√2
28.45°,由题可知,因此B=45°。
29.2解方程.原方程即为(2x)-3.2x-4=0,解得2x=4或2x=-1(舍去),解得x=2.
30.
31.
32.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
33.
34.
35.
36.
37.
38.
39.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
40.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
41.
42.由已知得:由上可解得
43.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=
44.
∴∴则
45.
46.(1)(2)∴又∴函数是偶函数
47.
48.由已知得整理得(2x+m)2=4x即∴再根据两点间距离公式得
49.在指数△ABC中,∠ABC=45°,AC=BC在直角△ADC中,∠ADC=60°,CD=ACCD=BC-BD,BD=20则,则
50.
X>4
51.
52.(1)f(x)=2sin(x-π/4),T=2π/|π|=2π(2)由题意得g(x)=f(x+π/3)=2sin[(x+π/3)-π/3]=2sinx,x∈R.∵g(-x)=2sin(-x)=-2sinx=-g(x),为奇函数.
53.
54.f(x)=x3-6x-9=3(x+1)(x-3)令f(x)>0,∴x>3或x,-1.令f(x)<0时,-1<x<3.∴f(x)单调增区间为(-∞,-1],[3,+∞),单调减区间为[-1,3].f(x)极大值为f(-1)=l0,f(x)极小值为f(3)=-22.
55.
56.证明:任取且x1<x2∴即∴在是增函数
57.
58.(1)设数列{an}的公差为d则a1=d,an=a1+(n-l)d=nd,由Sn=a1+a2+...+a10=55d=55,解得d=1,所以an=n,Sn=(1+n)n/2=1/2n(n+1)(2)由(1)得bn=2/n(n+1)=2(1/n-1/n)所以Tn=2(1-1/2)+2(1/2-1/3)+2(1/3-1/4)+...+2(1/n-1/n+1)=2(1-1/n+1).由于2(1-1/n+1)随n的增大而增大,可得1≤Tn<2.即Tn的取值范围是[1,2).
59.(1)∵PA垂直于⊙O所在的平面,BC包含于⊙O所在的平面,∴PA⊥BC,又∵AB为⊙O的直径,C为⊙O上异于A、B的-点,AC⊥BC,且PA∩AC=A,∴BC⊥平面PAC.(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论