江西省上饶上饶县联考2022-2023学年中考数学考试模拟冲刺卷含解析_第1页
江西省上饶上饶县联考2022-2023学年中考数学考试模拟冲刺卷含解析_第2页
江西省上饶上饶县联考2022-2023学年中考数学考试模拟冲刺卷含解析_第3页
江西省上饶上饶县联考2022-2023学年中考数学考试模拟冲刺卷含解析_第4页
江西省上饶上饶县联考2022-2023学年中考数学考试模拟冲刺卷含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是()A.60° B.65° C.55° D.50°2.下面说法正确的个数有()①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=12⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在△ABC中,若∠A+∠B=∠C,则此三角形是直角三角形.A.3个B.4个C.5个D.6个3.如图,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足为D、E,F分别是CD,AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF的度数为()A.62° B.38° C.28° D.26°4.如图,四边形ABCD是正方形,点P,Q分别在边AB,BC的延长线上且BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②△OAE∽△OPA;③当正方形的边长为3,BP=1时,cos∠DFO=,其中正确结论的个数是()A.0 B.1 C.2 D.35.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处 B.2处 C.3处 D.4处6.下列运算中,正确的是()A.x2+5x2=6x4 B.x3 C. D.7.若,则()A. B. C. D.8.从1、2、3、4、5、6这六个数中随机取出一个数,取出的数是3的倍数的概率是()A. B. C. D.9.在2016年泉州市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误的是()A.平均数为160 B.中位数为158 C.众数为158 D.方差为20.310.整数a、b在数轴上对应点的位置如图,实数c在数轴上且满足,如果数轴上有一实数d,始终满足,则实数d应满足().A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:()0﹣=_____.12.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_______.13.如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为.14.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2=_____°.15.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为1,即PS+SQ=1或PT+TQ=1.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(1,﹣3),C(﹣1,﹣1),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为_____.16.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处,若△CDB′恰为等腰三角形,则DB′的长为.三、解答题(共8题,共72分)17.(8分)化简求值:,其中.18.(8分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C(0,2)(1)求抛物线的表达式;(2)抛物线的对称轴与x轴交于点M,点D与点C关于点M对称,试问在该抛物线的对称轴上是否存在点P,使△BMP与△ABD相似?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.19.(8分)我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N.点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y).(1)如图2,ω=45°,矩形OABC中的一边OA在x轴上,BC与y轴交于点D,OA=2,OC=l.①点A、B、C在此斜坐标系内的坐标分别为A,B,C.②设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为.③设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为.(2)若ω=120°,O为坐标原点.①如图3,圆M与y轴相切原点O,被x轴截得的弦长OA=4,求圆M的半径及圆心M的斜坐标.②如图4,圆M的圆心斜坐标为M(2,2),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是.20.(8分)如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4).按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转90°,得到△A1B1C1.求点C1在旋转过程中所经过的路径长.21.(8分)已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f.(1)求证:PC是⊙O的切线;(2)设OP=AC,求∠CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值范围.22.(10分)如图,AE∥FD,AE=FD,B、C在直线EF上,且BE=CF,(1)求证:△ABE≌△DCF;(2)试证明:以A、B、D、C为顶点的四边形是平行四边形.23.(12分)如图:求作一点P,使,并且使点P到的两边的距离相等.24.为了奖励优秀班集体,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的单价各是多少元?若学校购买5副乒乓球拍和3副羽毛球拍,一共应支出多少元?

参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】试题分析:根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故选A.考点:多边形内角与外角;三角形内角和定理.2、C【解析】试题分析:①∵三角形三个内角的比是1:2:3,∴设三角形的三个内角分别为x,2x,3x,∴x+2x+3x=180°,解得x=30°,∴3x=3×30°=90°,∴此三角形是直角三角形,故本小题正确;②∵三角形的一个外角与它相邻的一个内角的和是180°,∴若三角形的一个外角等于与它相邻的一个内角,则此三角形是直角三角形,故本小题正确;③∵直角三角形的三条高的交点恰好是三角形的一个顶点,∴若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形,故本小题正确;④∵∠A=∠B=12∴设∠A=∠B=x,则∠C=2x,∴x+x+2x=180°,解得x=45°,∴2x=2×45°=90°,∴此三角形是直角三角形,故本小题正确;⑤∵三角形的一个外角等于与它不相邻的两内角之和,三角形的一个内角等于另两个内角之差,∴三角形一个内角也等于另外两个内角的和,∴这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确;⑥∵三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确.故选D.考点:1.三角形内角和定理;2.三角形的外角性质.3、C【解析】分析:主要考查:等腰三角形的三线合一,直角三角形的性质.注意:根据斜边和直角边对应相等可以证明△BDF≌△ADE.详解:∵AB=AC,AD⊥BC,∴BD=CD.又∵∠BAC=90°,∴BD=AD=CD.又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),∴∠DBF=∠DAE=90°﹣62°=28°.故选C.点睛:熟练运用等腰直角三角形三线合一性质、直角三角形斜边上的中线等于斜边的一半是解答本题的关键.4、C【解析】

由四边形ABCD是正方形,得到AD=BC,根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP;故①正确;根据勾股定理求出直接用余弦可求出.【详解】详解:∵四边形ABCD是正方形,∴AD=BC,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,∴△DAP≌△ABQ,∴∠P=∠Q,∵∴∴∴AQ⊥DP;故①正确;②无法证明,故错误.∵BP=1,AB=3,∴∴故③正确,故选C.【点睛】考查正方形的性质,三角形全等的判定与性质,勾股定理,锐角三角函数等,综合性比较强,对学生要求较高.5、D【解析】

到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【详解】满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.如图所示,故选D.【点睛】本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时一定要注意,不要漏解.6、C【解析】分析:直接利用积的乘方运算法则及合并同类项和同底数幂的乘除运算法则分别分析得出结果.详解:A.x2+5x2=,本项错误;B.,本项错误;C.,正确;D.,本项错误.故选C.点睛:本题主要考查了积的乘方运算及合并同类项和同底数幂的乘除运算,解答本题的关键是正确掌握运算法则.7、D【解析】

等式左边为非负数,说明右边,由此可得b的取值范围.【详解】解:,

,解得故选D.【点睛】本题考查了二次根式的性质:,.8、B【解析】考点:概率公式.专题:计算题.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:从1、2、3、4、5、6这六个数中随机取出一个数,共有6种情况,取出的数是3的倍数的可能有3和6两种,故概率为2/6="1/"3.故选B.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)="m"/n.9、D【解析】解:A.平均数为(158+160+154+158+170)÷5=160,正确,故本选项不符合题意;B.按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为158,故中位数为158,正确,故本选项不符合题意;C.数据158出现了2次,次数最多,故众数为158,正确,故本选项不符合题意;D.这组数据的方差是S2=[(154﹣160)2+2×(158﹣160)2+(160﹣160)2+(170﹣160)2]=28.8,错误,故本选项符合题意.故选D.点睛:本题考查了众数、平均数、中位数及方差,解题的关键是掌握它们的定义,难度不大.10、D【解析】

根据a≤c≤b,可得c的最小值是﹣1,根据有理数的加法,可得答案.【详解】由a≤c≤b,得:c最小值是﹣1,当c=﹣1时,c+d=﹣1+d,﹣1+d≥0,解得:d≥1,∴d≥b.故选D.【点睛】本题考查了实数与数轴,利用a≤c≤b得出c的最小值是﹣1是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、-1【解析】

本题需要运用零次幂的运算法则、立方根的运算法则进行计算.【详解】由分析可得:()0﹣=1-2=﹣1.【点睛】熟练运用零次幂的运算法则、立方根的运算法则是本题解题的关键.12、2【解析】分析:∵由主视图得出长方体的长是6,宽是2,这个几何体的体积是16,∴设高为h,则6×2×h=16,解得:h=1.∴它的表面积是:2×1×2+2×6×2+1×6×2=2.13、300π【解析】试题分析:首先根据底面圆的面积求得底面的半径,然后结合弧长公式求得扇形的半径,然后利用扇形的面积公式求得侧面积即可.∵底面圆的面积为100π,∴底面圆的半径为10,∴扇形的弧长等于圆的周长为20π,设扇形的母线长为r,则=20π,解得:母线长为30,∴扇形的面积为πrl=π×10×30=300π考点:(1)、圆锥的计算;(2)、扇形面积的计算14、40【解析】如图,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°,故答案为:40.15、(1,﹣2).【解析】

若设M(x,y),则由题目中对“实际距离”的定义可得方程组:3-x+1-y=y+1+x+1=1-x+3+y,解得:x=1,y=-2,则M(1,-2).故答案为(1,-2).16、36或4.【解析】

(3)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=36,得BE=3.由翻折的性质,得B′E=BE=3,∴EG=AG﹣AE=8﹣3=5,∴B′G===33,∴B′H=GH﹣B′G=36﹣33=4,∴DB′===;(3)当DB′=CD时,则DB′=36(易知点F在BC上且不与点C、B重合);(3)当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F与点C重合,不符合题意,舍去.综上所述,DB′的长为36或.故答案为36或.考点:3.翻折变换(折叠问题);3.分类讨论.三、解答题(共8题,共72分)17、【解析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.详解:原式当时,点睛:考查分式的混合运算,掌握运算顺序是解题的关键.18、(1)y=﹣x2+x+2;(2)满足条件的点P的坐标为(,)或(,﹣)或(,5)或(,﹣5).【解析】

(1)利用待定系数法求抛物线的表达式;(2)使△BMP与△ABD相似的有三种情况,分别求出这三个点的坐标.【详解】(1)∵抛物线与x轴交于点A(﹣1,0),B(4,0),∴设抛物线的解析式为y=a(x+1)(x﹣4),∵抛物线与y轴交于点C(0,2),∴a×1×(﹣4)=2,∴a=﹣,∴抛物线的解析式为y=﹣(x+1)(x﹣4)=﹣x2+x+2;(2)如图1,连接CD,∵抛物线的解析式为y=﹣x2+x+2,∴抛物线的对称轴为直线x=,∴M(,0),∵点D与点C关于点M对称,且C(0,2),∴D(3,﹣2),∵MA=MB,MC=MD,∴四边形ACBD是平行四边形,∵A(﹣1,0),B(4,0),C(3,﹣22),∴AB2=25,BD2=(4﹣1)2+22=5,AD2=(3+1)2+22=20,∴AD2+BD2=AB2,∴△ABD是直角三角形,∴∠ADB=90°,设点P(,m),∴MP=|m|,∵M(,0),B(4,0),∴BM=,∵△BMP与△ABD相似,∴①当△BMP∽ADB时,∴,∴,∴m=±,∴P(,)或(,﹣),②当△BMP∽△BDA时,,∴,∴m=±5,∴P(,5)或(,﹣5),即:满足条件的点P的坐标为P(,)或(,﹣)或(,5)或(,﹣5).【点睛】本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.19、(1)①(2,0),(1,),(﹣1,);②y=x;③y=x,y=﹣x+;(2)①半径为4,M(,);②﹣1<r<+1.【解析】

(1)①如图2-1中,作BE∥OD交OA于E,CF∥OD交x轴于F.求出OE、OF、CF、OD、BE即可解决问题;②如图2-2中,作BE∥OD交OA于E,作PM∥OD交OA于M.利用平行线分线段成比例定理即可解决问题;③如图3-3中,作QM∥OA交OD于M.利用平行线分线段成比例定理即可解决问题;(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.解直角三角形即可解决问题;②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.求出FN=NE=1时,⊙M的半径即可解决问题.【详解】(1)①如图2﹣1中,作BE∥OD交OA于E,CF∥OD交x轴于F,由题意OC=CD=1,OA=BC=2,∴BD=OE=1,OD=CF=BE=,∴A(2,0),B(1,),C(﹣1,),故答案为(2,0),(1,),(﹣1,);②如图2﹣2中,作BE∥OD交OA于E,作PM∥OD交OA于M,∵OD∥BE,OD∥PM,∴BE∥PM,∴=,∴,∴y=x;③如图2﹣3中,作QM∥OA交OD于M,则有,∴,∴y=﹣x+,故答案为y=x,y=﹣x+;(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N,∵ω=120°,OM⊥y轴,∴∠MOA=30°,∵MF⊥OA,OA=4,∴OF=FA=2,∴FM=2,OM=2FM=4,∵MN∥y轴,∴MN⊥OM,∴MN=,ON=2MN=,∴M(,);②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.∵MK∥x轴,ω=120°,∴∠MKO=60°,∵MK=OK=2,∴△MKO是等边三角形,∴MN=,当FN=1时,MF=﹣1,当EN=1时,ME=+1,观察图象可知当⊙M的半径r的取值范围为﹣1<r<+1.故答案为:﹣1<r<+1.【点睛】本题考查圆综合题、平行线分线段成比例定理、等边三角形的判定和性质、平面直角坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题.20、(1)①见解析;②见解析;(1)1π.【解析】

(1)①利用点平移的坐标规律,分别画出点A、B、C的对应点A1、B1、C1的坐标,然后描点可得△A1B1C1;②利用网格特点和旋转的性质,分别画出点A1、B1、C1的对应点A1、B1、C1即可;(1)根据弧长公式计算.【详解】(1)①如图,△A1B1C1为所作;②如图,△A1B1C1为所作;(1)点C1在旋转过程中所经过的路径长=【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移的性质.21、(1)详见解析;(2);(3)【解析】

(1)连接OC,根据等腰三角形的性质得到∠A=∠OCA,由平行线的性质得到∠A=∠BOP,∠ACO=∠COP,等量代换得到∠COP=∠BOP,由切线的性质得到∠OBP=90°,根据全等三角形的性质即可得到结论;

(2)过O作OD⊥AC于D,根据相似三角形的性质得到CD•OP=OC2,根据已知条件得到,由三角函数的定义即可得到结论;

(3)连接BC,根据勾股定理得到BC==12,当M与A重合时,得到d+f=12,当M与B重合时,得到d+f=9,于是得到结论.【详解】(1)连接OC,

∵OA=OC,

∴∠A=∠OCA,

∵AC∥OP,

∴∠A=∠BOP,∠ACO=∠COP,

∴∠COP=∠BOP,

∵PB是⊙O的切线,AB是⊙O的直径,

∴∠OBP=90°,

在△POC与△POB中,,

∴△COP≌△BOP,

∴∠OCP=∠OBP=90°,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论