




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一个圆锥的底面和一个半球底面完全重合,如果圆锥的表面积与半球的表面积相等,那么这个圆锥轴截面底角的大小是()A. B. C. D.2.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案种数是()A.18种 B.36种 C.54种 D.72种3.已知双曲线,为坐标原点,、为其左、右焦点,点在的渐近线上,,且,则该双曲线的渐近线方程为()A. B. C. D.4.在中,是的中点,,点在上且满足,则等于()A. B. C. D.5.已知函数,则下列结论中正确的是①函数的最小正周期为;②函数的图象是轴对称图形;③函数的极大值为;④函数的最小值为.A.①③ B.②④C.②③ D.②③④6.阿波罗尼斯(约公元前262~190年)证明过这样的命题:平面内到两定点距离之比为常数的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点,间的距离为2,动点与,的距离之比为,当,,不共线时,的面积的最大值是()A. B. C. D.7.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.8.如图所示点是抛物线的焦点,点、分别在抛物线及圆的实线部分上运动,且总是平行于轴,则的周长的取值范围是()A. B. C. D.9.等比数列的前项和为,若,,,,则()A. B. C. D.10.设双曲线的一条渐近线为,且一个焦点与抛物线的焦点相同,则此双曲线的方程为()A. B. C. D.11.执行如图所示的程序框图,若输入,,则输出的()A.4 B.5 C.6 D.712.已知函数是偶函数,当时,函数单调递减,设,,,则的大小关系为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知集合,,则_____________.14.设实数x,y满足,则点表示的区域面积为______.15.《九章算术》第七章“盈不足”中第一题:“今有共买物,人出八,盈三钱;人出七,不足四,问人数物价各几何?”借用我们现在的说法可以表述为:有几个人合买一件物品,每人出8元,则付完钱后还多3元;若每人出7元,则还差4元才够付款.问他们的人数和物品价格?答:一共有_____人;所合买的物品价格为_______元.16.如图,半球内有一内接正四棱锥,该四棱锥的体积为,则该半球的体积为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列的公差,且,,成等比数列.(1)求数列的通项公式;(2)设,求数列的前项和.18.(12分)如图,在直三棱柱中,分别是中点,且,.求证:平面;求点到平面的距离.19.(12分)设数列满足,.(1)求数列的通项公式;(2)设,求数列的前项和.20.(12分)在平面直角坐标系xOy中,曲线C的参数方程为(m为参数),以坐标点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+)=1.(1)求直线l的直角坐标方程和曲线C的普通方程;(2)已知点M(2,0),若直线l与曲线C相交于P、Q两点,求的值.21.(12分)已知,且.(1)请给出的一组值,使得成立;(2)证明不等式恒成立.22.(10分)设函数()的最小值为.(1)求的值;(2)若,,为正实数,且,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
设圆锥的母线长为l,底面半径为R,再表达圆锥表面积与球的表面积公式,进而求得即可得圆锥轴截面底角的大小.【详解】设圆锥的母线长为l,底面半径为R,则有,解得,所以圆锥轴截面底角的余弦值是,底角大小为.故选:D【点睛】本题考查圆锥的表面积和球的表面积公式,属于基础题.2、B【解析】
把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇即得.【详解】把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇,则不同的分配方案有种.故选:.【点睛】本题考查排列组合,属于基础题.3、D【解析】
根据,先确定出的长度,然后利用双曲线定义将转化为的关系式,化简后可得到的值,即可求渐近线方程.【详解】如图所示:因为,所以,又因为,所以,所以,所以,所以,所以,所以,所以渐近线方程为.故选:D.【点睛】本题考查根据双曲线中的长度关系求解渐近线方程,难度一般.注意双曲线的焦点到渐近线的距离等于虚轴长度的一半.4、B【解析】
由M是BC的中点,知AM是BC边上的中线,又由点P在AM上且满足可得:P是三角形ABC的重心,根据重心的性质,即可求解.【详解】解:∵M是BC的中点,知AM是BC边上的中线,又由点P在AM上且满足∴P是三角形ABC的重心∴又∵AM=1∴∴故选B.【点睛】判断P点是否是三角形的重心有如下几种办法:①定义:三条中线的交点.②性质:或取得最小值③坐标法:P点坐标是三个顶点坐标的平均数.5、D【解析】
因为,所以①不正确;因为,所以,,所以,所以函数的图象是轴对称图形,②正确;易知函数的最小正周期为,因为函数的图象关于直线对称,所以只需研究函数在上的极大值与最小值即可.当时,,且,令,得,可知函数在处取得极大值为,③正确;因为,所以,所以函数的最小值为,④正确.故选D.6、A【解析】
根据平面内两定点,间的距离为2,动点与,的距离之比为,利用直接法求得轨迹,然后利用数形结合求解.【详解】如图所示:设,,,则,化简得,当点到(轴)距离最大时,的面积最大,∴面积的最大值是.故选:A.【点睛】本题主要考查轨迹的求法和圆的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.7、D【解析】
结合三视图可知,该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,分别求出体积即可.【详解】由三视图可知该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,则上半部分的半个圆锥的体积,下半部分的正三棱柱的体积,故该几何体的体积.故选:D.【点睛】本题考查三视图,考查空间几何体的体积,考查空间想象能力与运算求解能力,属于中档题.8、B【解析】
根据抛物线方程求得焦点坐标和准线方程,结合定义表示出;根据抛物线与圆的位置关系和特点,求得点横坐标的取值范围,即可由的周长求得其范围.【详解】抛物线,则焦点,准线方程为,根据抛物线定义可得,圆,圆心为,半径为,点、分别在抛物线及圆的实线部分上运动,解得交点横坐标为2.点、分别在两个曲线上,总是平行于轴,因而两点不能重合,不能在轴上,则由圆心和半径可知,则的周长为,所以,故选:B.【点睛】本题考查了抛物线定义、方程及几何性质的简单应用,圆的几何性质应用,属于中档题.9、D【解析】试题分析:由于在等比数列中,由可得:,又因为,所以有:是方程的二实根,又,,所以,故解得:,从而公比;那么,故选D.考点:等比数列.10、C【解析】
求得抛物线的焦点坐标,可得双曲线方程的渐近线方程为,由题意可得,又,即,解得,,即可得到所求双曲线的方程.【详解】解:抛物线的焦点为可得双曲线即为的渐近线方程为由题意可得,即又,即解得,.即双曲线的方程为.故选:C【点睛】本题主要考查了求双曲线的方程,属于中档题.11、C【解析】
根据程序框图程序运算即可得.【详解】依程序运算可得:,故选:C【点睛】本题主要考查了程序框图的计算,解题的关键是理解程序框图运行的过程.12、A【解析】
根据图象关于轴对称可知关于对称,从而得到在上单调递增且;再根据自变量的大小关系得到函数值的大小关系.【详解】为偶函数图象关于轴对称图象关于对称时,单调递减时,单调递增又且,即本题正确选项:【点睛】本题考查利用函数奇偶性、对称性和单调性比较函数值的大小关系问题,关键是能够通过奇偶性和对称性得到函数的单调性,通过自变量的大小关系求得结果.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由集合和集合求出交集即可.【详解】解:集合,,.故答案为:.【点睛】本题考查了交集及其运算,属于基础题.14、【解析】
先画出满足条件的平面区域,求出交点坐标,利用定积分即可求解.【详解】画出实数x,y满足表示的平面区域,如图(阴影部分):则阴影部分的面积,故答案为:【点睛】本题考查了定积分求曲边梯形的面积,考查了微积分基本定理,属于基础题.15、753【解析】
根据物品价格不变,可设共有x人,列出方程求解即可【详解】设共有人,由题意知,解得,可知商品价格为53元.即共有7人,商品价格为53元.【点睛】本题主要考查了数学文化及一元一次方程的应用,属于中档题.16、【解析】
由题意可知半球的半径与正四棱锥的高相等,可得正四棱锥的棱与半径的关系,进而可写出半球的半径与四棱锥体积的关系,进而求得结果.【详解】设所给半球的半径为,则四棱锥的高,则,由四棱锥的体积,半球的体积为:.【方法点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)根据等比中项性质可构造方程求得,由等差数列通项公式可求得结果;(2)由(1)可得,可知为等比数列,利用分组求和法,结合等差和等比数列求和公式可求得结果.【详解】(1)成等比数列,,即,,解得:,.(2)由(1)得:,,,数列是首项为,公比为的等比数列,.【点睛】本题考查等差数列通项公式的求解、分组求和法求解数列的前项和的问题;关键是能够根据通项公式证得数列为等比数列,进而采用分组求和法,结合等差和等比数列求和公式求得结果.18、(1)详见解析;(2).【解析】
(1)利用线面垂直的判定定理和性质定理即可证明;(2)取中点为,则,证得平面,利用等体积法求解即可.【详解】(1)因为,,,是的中点,,为直三棱柱,所以平面,因为为中点,所以平面,,又,平面(2),又分别是中点,.由(1)知,,又平面,取中点为,连接如图,则,平面,设点到平面的距离为,由,得,即,解得,点到平面的距离为.【点睛】本题考查线面垂直的判定定理和性质定理、等体积法求点到面的距离;考查逻辑推理能力和运算求解能力;熟练掌握线面垂直的判定定理和性质定理是求解本题的关键;属于中档题.19、(1);(2).【解析】
(1)令可求得的值,令时,由可得出,两式相减可得的表达式,然后对是否满足在时的表达式进行检验,由此可得出数列的通项公式;(2)求出数列的通项公式,对分奇数和偶数两种情况讨论,利用奇偶分组求和法结合等差数列和等比数列的求和公式可求得结果.【详解】(1),当时,;当时,由得,两式相减得,.满足.因此,数列的通项公式为;(2).①当为奇数时,;②当为偶数时,.综上所述,.【点睛】本题考查数列通项的求解,同时也考查了奇偶分组求和法,考查计算能力,属于中等题.20、(1)l:,C方程为;(2)=【解析】
(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.
(2)利用一元二次方程根和系数关系式的应用求出结果.【详解】(1)曲线C的参数方程为(m为参数),两式相加得到,进一步转换为.直线l的极坐标方程为ρcos(θ+)=1,则转换为直角坐标方程为.(2)将直线的方程转换为参数方程为(t为参数),代入得到(t1和t2为P、Q对应的参数),所以,,所以=.【点睛】本题考查参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.21、(1)(答案不唯一)(2)证明见解析【解析】
(1)找到一组符合条件的值即可;(2)由可得,整理可得,两边同除可得,再由可得,两边同时加可得,即可得证.【详解】解析:(1)(答案不唯一)(2)证明:由题意可知,,因为,所以.所以,即.因为,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第07讲 文言文翻译 讲义 中考语文复习
- 配送流程合同范本
- 中医院内科医生年终总结
- 加盟学习产品合同范本
- 上课玩手机检讨书
- 可研报合同范本
- 北京整车销售合同范本
- 七年级英语教学的工作总结
- 七年级数学上册教学计划
- 医院购销耗材合同范本
- 2025年湖南铁路科技职业技术学院单招职业技能测试题库参考答案
- 《ISO 56000-2025创新管理 基础和术语》之1:“引言+范围+术语和定义”专业深度解读与应用指导材料(雷泽佳编写2025A0)-1-150
- DB37-T4817-2025 沥青路面就地冷再生技术规范
- 2025年公共营养师三级理论试题及答案
- 提高设备基础预埋螺栓一次安装合格率
- 2024年科技节小学科普知识竞赛题及答案(共100题)
- 常见焊接缺陷以及其处理方法PPT
- 《子宫脱垂护理查房》
- 关于对项目管理的奖惩制度
- A320主起落架收放原理分析及运动仿真
- 2. SHT 3543-2017施工过程文件表格
评论
0/150
提交评论