广东省江门市沙冈中学高一数学理下学期期末试卷含解析_第1页
广东省江门市沙冈中学高一数学理下学期期末试卷含解析_第2页
广东省江门市沙冈中学高一数学理下学期期末试卷含解析_第3页
广东省江门市沙冈中学高一数学理下学期期末试卷含解析_第4页
广东省江门市沙冈中学高一数学理下学期期末试卷含解析_第5页
免费预览已结束,剩余2页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省江门市沙冈中学高一数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知a=log0.60.5,b=ln0.5,c=0.60.5.则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a参考答案:B【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】根据指数函数和对数函数的性质即可得到结论.【解答】解:log0.60.5>1,ln0.5<0,0<0.60.5<1,即a>1,b<0,0<c<1,故a>c>b,故选:B【点评】本题主要考查函数值的大小比较,利用指数函数和对数函数的单调性是解决本题的关键.2.若函数f(x)是R上的单调函数,且对任意实数x,都有f[f(x)+]=,则f(log23)=()A.1 B. C. D.0参考答案:C【考点】函数单调性的性质.【分析】由已知可得f(x)+=a恒成立,且f(a)=,求出a=1后,将x=log23代入可得答案.【解答】解:∵函数f(x)是R上的单调函数,且对任意实数x,都有f[f(x)+]=,∴f(x)+=a恒成立,且f(a)=,即f(x)=﹣+a,f(a)=﹣+a=,解得:a=1,∴f(x)=﹣+1,∴f(log23)=,故选:C3.(5分)已知函数f(x)=,则f[f(﹣2)]=() A. 8 B. ﹣8 C. 16 D. 8或﹣8参考答案:A考点: 函数的值.专题: 函数的性质及应用.分析: 根据分段函数f(x)的解析式,求出f[f(﹣2)]的值即可.解答: ∵函数f(x)=,∴f(﹣2)=(﹣2)2=4,∴f[f(﹣2)]=f[4]=2×4=8.故选:A.点评: 本题考查了根据分段函数的解析式,求出函数值的应用问题,是基础题目.4.关于直线、与平面、,有下列四个命题:①若且,则;②若且,则;③若且,则;④若且,则;其中真命题的序号是(

).A.①②

B.②③

C.①④

D.③④参考答案:B5.已知a>b且ab≠0,则在:①a2>b2;②2a>2b;③<;

④;

⑤<

这五个关系式中,恒成立的有(

)(A)1个

(B)2个

(C)3个

(D)4个参考答案:D6.若角α与角β的终边关于y轴对称,则()A.α+β=π+kπ(k∈Z) B.α+β=π+2kπ(k∈Z)C. D.参考答案:B【考点】终边相同的角.【分析】根据角α与角β的终边关于y轴对称,即可确定α与β的关系.【解答】解:∵π﹣α是与α关于y轴对称的一个角,∴β与π﹣α的终边相同,即β=2kπ+(π﹣α)∴α+β=α+2kπ+(π﹣α)=(2k+1)π,故答案为:α+β=(2k+1)π或α=﹣β+(2k+1)π,k∈z,故选:B.7.已知直线,平面,下列命题中正确的是

)A.,,

∥,则

B.,,,则C.∥,,

∥,则D.⊥,,,则参考答案:C略8.已知函数f(x)=sin(2x+φ)的图象关于直线对称,则φ可能是()A. B. C. D.参考答案:C【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由三角函数图象与性质可知,图象关于直线对称,则此时相位必为kπ+,k∈z,由此建立方程求出φ的表达式,再比对四个选项选出正确选项【解答】解:∵函数f(x)=sin(2x+φ)的图象关于直线对称∴2×+φ=kπ+,k∈z,∴φ=kπ+,k∈z,当k=0时,φ=,故选C.【点评】本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,正确解答本题,关键是了解函数对称轴方程的特征,及此时相位的特征,由此特征建立方程求参数,熟练掌握三角函数的性质是迅速,准确解三角函数相关的题的关键,9.满足条件的集合的个数是(

)A.4

B.3

C.2

D.1参考答案:C10.若O是△ABC所在平面内一点,且满足,则△ABC一定是

)A.等边三角形

B.直角三角形

C.等腰三角形

D.等腰直角三角形

参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11._____.参考答案:2【分析】先通分,再利用二倍角的正弦公式和和角的余弦公式化简即得解.【详解】.故答案为:2【点睛】本题主要考查三角恒等变换和三角化简求值,意在考查学生对这些知识的理解掌握水平,属于基础题.12.若,则________.参考答案:【分析】先求,再代入求值得解.【详解】由题得所以.故答案为:【点睛】本题主要考查共轭复数和复数的模的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.13.已知点A(﹣1,2),B(1,3),则向量的坐标为

.参考答案:(2,1)【考点】平面向量的坐标运算.【分析】根据平面向量的坐标表示,即可写出向量的坐标.【解答】解:点A(﹣1,2),B(1,3),则向量=(1﹣(﹣1),3﹣2)=(2,1).故答案为:(2,1).【点评】本题考查了平面向量的坐标表示与应用问题,是基础题目.14.函数的值域是

.参考答案:略15.若是奇函数,则实数

参考答案:16.某药品经过两次降价,每瓶的零售价由100元降为81元,已知两次降价的百分率相同,设为,为求两次降价的百分率则列出方程为____________.参考答案:略17.已知方程3x+x=5的根在区间[k,k+1)(k∈Z),则k的值为.参考答案:1【考点】函数零点的判定定理.【分析】方程3x+x=5的解转化为函数f(x)=3x+x﹣5的零点问题,把区间端点函数值代入验证即可.【解答】解:令f(x)=3x+x﹣5,由y=3x和y=x﹣5均为增函数,故f(x)=3x+x﹣5在R上为增函数,故f(x)=3x+x﹣5至多有一个零点,∵f(1)=3+1﹣5<0f(2)=9+2﹣5>0∴f(x)=3x+x﹣5在区间[1,2]有一个零点,即方程方程3x+x=5的解所在区间为[1,2],故k=1,故答案为:1【点评】考查方程的根和函数零点之间的关系,即函数零点的判定定理,体现了转化的思想方法,属基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)某港口的水深y(米)是时间t(0≤t≤24,单位:小时)的函数,下面是每天时间与水深的关系表:t03691215182124y10139.97101310.1710经过长期观测,y=f(t)可近似的看成是函数y=Asinωt+b(1)根据以上数据,求出y=f(t)的解析式;(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?参考答案:考点: 已知三角函数模型的应用问题.专题: 计算题.分析: (1)由表中数据可以看到:水深最大值为13,最小值为7,求出b和A;再借助于相隔9小时达到一次最大值说明周期为12求出ω即可求出y=f(t)的解析式;(2)把船舶安全转化为深度f(t)≥11.5,即;再解关于t的三角不等式即可求出船舶在一天中的哪几段时间可以安全的进出该港.解答: (1)由表中数据可以看到:水深最大值为13,最小值为7,∴=10,且相隔9小时达到一次最大值说明周期为12,因此,,故(0≤t≤24)(2)要想船舶安全,必须深度f(t)≥11.5,即∴,解得:12k+1≤t≤5+12k

k∈Z又0≤t≤24当k=0时,1≤t≤5;当k=1时,13≤t≤17;故船舶安全进港的时间段为(1:00﹣5:00),(13:00﹣17:00).点评: 本题主要考查三角函数知识的应用问题.解决本题的关键在于求出函数解析式.求三角函数的解析式注意由题中条件求出周期,最大最小值等.19.已知函数,,设.()判断函数的奇偶性,并说明理由.()求函数的单调区间.()求函数的值域(不需说明理由).参考答案:见解析()定义域为,关于原点对称,,∴为偶函数.()任取,且,.∵,∴,∴,即,∴在递减,在递增.()值域为.20.数列满足:;令;求参考答案:解析:改写条件式为,则,所以,;;.21.(8分)如图,有一块半径为2的半圆形钢板,计划剪裁成等腰梯形ABCD的形状,它的下底AB是圆的直径,上底CD的端点在圆周上,写出这个梯形周长y和腰长x间的函数解析式,定义域,并求出周长的最大值.参考答案:考点: 不等式的实际应用.专题: 应用题;函数的性质及应用.分析: 作DE⊥AB于E,连接BD,根据相似关系求出AE,而CD=AB﹣2AE,从而求出梯形ABCD的周长y与腰长x间的函数解析式,根据AD>0,AE>0,CD>0,可求出定义域;利用二次函数在给定区间上求出最值的知识可求出函数的最大值.解答: 解:如图,作DE⊥AB于E,连接BD.因为AB为直径,所以∠ADB=90°.在Rt△ADB与Rt△AED中,∠ADB=90°=∠AED,∠BAD=∠DAE,所以Rt△ADB∽Rt△AED.所以,即.又AD=x,AB=4,所以.所以CD=AB﹣2AE=4﹣,于是y=AB+BC+CD+AD=4+x+4﹣+x=﹣+2x+8由于AD>0,AE>0,CD>0,所以x>0,,4﹣>0,解得0<x,故所求的函数为y=﹣+2x+8(0<x)y=﹣+2x+8=﹣(x﹣2)2+10,又0<x,所以,当x=2时,y有最大值10.点评: 本题考查利用数学知识解决实际问题.射影定理的应用是解决此题的关键,二次函数在解决实际问题中求解最值的常用的方法,属于中档题.22.(14分)若函数f(x)为定义域D上单调函数,且存在区间[a,b]?D(其中a<b),使得当x∈[a,b]时,f(x)的取值范围恰为[a,b],则称函数f(x)是D上的正函数,区间[a,b]叫做等域区间.(1)函数h(x)=x2(x≤0)是否是正函数?若是,求h(x)的等域区间,若不是,请说明理由;(2)已知是[0,+∞)上的正函数,求f(x)的等域区间;(3)试探究是否存在实数m,使得函数g(x)=x2+m是(﹣∞,0)上的正函数?若存在,请求出实数m的取值范围;若不存在,请说明理由.参考答案:考点: 分段函数的应用.专题: 函数的性质及应用.分析: (1)先假设h(x)是正函数,则当x∈[a,b]时,即,判断此方程是否有解即可;(2)因为是[0,+∞)上的正函数,然后根据正函数的定义建立方程组,解之可求出f(x)的等域区间;(2)根据函数g(x)=x2+m是(﹣∞,0)上的正函数建立方程组,消去b,求出a的取值范围,转化成关于a的方程a2+a+m+1=0在区间(﹣1,﹣)内有实数解进行求解.解答: (1)函数h(x)=x2(x≤0)不是正函数.理由如下:因为函数y=x2在(﹣∞,0]上单调递减,若h(x)是正函数,则当x∈[a,b]时,即,消去b得a3=1,而a<0,∴无解所以函数h(x)=x2(x≤0)不是正函数.(2)因为=是[0,+∞)上的正函数,且

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论