广东省广州三中学2022年九年级数学第一学期期末调研试题含解析_第1页
广东省广州三中学2022年九年级数学第一学期期末调研试题含解析_第2页
广东省广州三中学2022年九年级数学第一学期期末调研试题含解析_第3页
广东省广州三中学2022年九年级数学第一学期期末调研试题含解析_第4页
广东省广州三中学2022年九年级数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.掷一枚质地均匀的骰子,骰子停止后,在下列四个选项中,可能性最大的是()A.点数小于4 B.点数大于4 C.点数大于5 D.点数小于52.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为()A.20° B.25° C.30° D.40°3.如果△ABC∽△DEF,且对应边的AB与DE的长分别为2、3,则△ABC与△DEF的面积之比为()A.4:9 B.2:3 C.3:2 D.9:44.如图,AB是O的直径,AB=4,C为的三等分点(更靠近A点),点P是O上一个动点,取弦AP的中点D,则线段CD的最大值为()A.2 B. C. D.5.如图,已知□ABCD的对角线BD=4cm,将□ABCD绕其对称中心O旋转180°,则点D所转过的路径长为()A.4πcm B.3πcm C.2πcm D.πcm6.某班的同学想测量一教楼AB的高度.如图,大楼前有一段斜坡BC,已知BC的长为16米,它的坡度i=1:3.在离C点45米的D处,测得一教楼顶端A的仰角为37°,则一教楼AB的高度约()米(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,A.44.1B.39.8C.36.1D.25.97.如图,边长为a,b的长方形的周长为14,面积为10,则a3b+ab3的值为()A.35 B.70 C.140 D.2908.点M(2,-3)关于原点对称的点N的坐标是:()A.(-2,-3) B.(-2,3) C.(2,3) D.(-3,2)9.抛物线先向下平移1个单位,再向左平移2个单位,所得的抛物线是()A.. B.C. D.10.用16米长的铝制材料制成一个矩形窗框,使它的面积为9平方米,若设它的一边长为x,根据题意可列出关于x的方程为()A. B. C. D.11.下列交通标志中,是轴对称图形但不是中心对称图形的是()A. B. C. D.12.如图,小颖身高为160cm,在阳光下影长AB=240cm,当她走到距离墙角(点D)150cm处时,她的部分影子投射到墙上,则投射在墙上的影子DE的长度为()A.50 B.60 C.70 D.80二、填空题(每题4分,共24分)13.铅球行进高度y(m)与水平距离x(m)之间的关系为y=﹣x2+x+,铅球推出后最大高度是_____m,铅球落地时的水平距离是______m.14.如图,在△ABC中,AB=AC,∠A=120°,BC=4,⊙A与BC相切于点D,且交AB,AC于M,N两点,则图中阴影部分的面积是_____(保留π).15.如图,竖直放置的一个铝合金窗框由矩形和弧形两部分组成,AB=m,AD=2m,弧CD所对的圆心角为∠COD=120°.现将窗框绕点B顺时针旋转横放在水平的地面上,这一过程中,窗框上的点到地面的最大高度为__m.16.已知在平面直角坐标系中,点在第二象限,且到轴的距离为3,到轴的距离为4,则点的坐标为______.17.如图,把一个圆锥沿母线OA剪开,展开后得到扇形AOC,已知圆锥的高h为12cm,OA=13cm,则扇形AOC中的长是_____cm(计算结果保留π).18.已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=-(k>0)图象上的两个点,则y1与y2的大小关系为_____.三、解答题(共78分)19.(8分)已知:内接于⊙,连接并延长交于点,交⊙于点,满足.(1)如图1,求证:;(2)如图2,连接,点为弧上一点,连接,=,过点作,垂足为点,求证:;(3)如图3,在(2)的条件下,点为上一点,分别连接,,过点作,交⊙于点,,,连接,求的长.20.(8分)如图,某中学一幢教学楼的顶部竖有一块写有“校训”的宣传牌,米,王老师用测倾器在点测得点的仰角为,再向教学楼前进9米到达点,测得点的仰角为,若测倾器的高度米,不考虑其它因素,求教学楼的高度.(结果保留根号)21.(8分)端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.22.(10分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?23.(10分)解方程(1)2x2﹣6x﹣1=0(2)(x+5)2=6(x+5)24.(10分)如图,AB是⊙O的弦,AB=4,点P在上运动(点P不与点A、B重合),且∠APB=30°,设图中阴影部分的面积为y.(1)⊙O的半径为;(2)若点P到直线AB的距离为x,求y关于x的函数表达式,并直接写出自变量x的取值范围.25.(12分)材料1:如图1,昌平南环大桥是经典的悬索桥,当今大跨度桥梁大多采用此种结构.此种桥梁各结构的名称如图2所示,其建造原理是在两边高大的桥塔之间,悬挂着主索,再以相应的间隔,从主索上设置竖直的吊索,与桥面垂直,并连接桥面承接桥面的重量,主索几何形态近似符合抛物线.图1图2材料2:如图3,某一同类型悬索桥,两桥塔AD=BC=10m,间距AB为32m,桥面AB水平,主索最低点为点P,点P距离桥面为2m;图3为了进行研究,甲、乙、丙三位同学分别以不同方式建立了平面直角坐标系,如下图:甲同学:以DC中点为原点,DC所在直线为x轴,建立平面直角坐标系;乙同学:以AB中点为原点,AB所在直线为x轴,建立平面直角坐标系;丙同学:以点P为原点,平行于AB的直线为x轴,建立平面直角坐标系.(1)请你选用其中一位同学建立的平面直角坐标系,写出此种情况下点C的坐标,并求出主索抛物线的表达式;(2)距离点P水平距离为4m和8m处的吊索共四条需要更换,则四根吊索总长度为多少米?26.三台县教育和体育局为帮助万福村李大爷“精准脱贫”,在网上销售李大爷自己手工做的竹帘,其成本为每张40元,当售价为每张80元时,每月可销售100张.为了吸引更多顾客,采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5张.设每张竹帘的售价为元(为正整数),每月的销售量为张.(1)直接写出与的函数关系式;(2)设该网店每月获得的利润为元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)李大爷深感扶贫政策给自己带来的好处,为了回报社会,他决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,求销售单价应该定在什么范围内?

参考答案一、选择题(每题4分,共48分)1、D【解析】根据所有可能的的6种结果中,看哪种情况出现的多,哪种发生的可能性就大.【详解】掷一枚质地均匀的骰子,骰子停止后共有6种等可能的情况,即:点数为1,2,3,4,5,6;其中点数小于4的有3种,点数大于4的有2种,点数大于5的有1种,点数小于5的有4种,故点数小于5的可能性较大,故选:D.【点睛】本题考查了等可能事件发生的概率,理解可能性的大小是关键.2、B【分析】直接利用切线的性质得出∠OCD=90°,进而得出∠DOC=50°,进而得出答案.【详解】解:连接OC,∵DC是⊙O的切线,C为切点,∴∠OCD=90°,∵∠D=40°,∴∠DOC=50°,∵AO=CO,∴∠A=∠ACO,∴∠A=∠DOC=25°.

故选:B.【点睛】此题主要考查了切线的性质,正确得出∠DOC=50°是解题关键.3、A【分析】根据相似三角形的面积的比等于相似比的平方进行计算.【详解】∵△ABC∽△DEF,∴△ABC与△DEF的面积之比等于()2=()2=.故选:A.【点睛】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比等于相似比;相似三角形的面积的比等于相似比的平方.4、D【解析】取OA的中点Q,连接DQ,OD,CQ,根据条件可求得CQ长,再由垂径定理得出OD⊥AP,由直角三角形斜边中线等于斜边一半求得QD长,根据当C,Q,D三点共线时,CD长最大求解.【详解】解:如图,取AO的中点Q,连接CQ,QD,OD,∵C为的三等分点,∴的度数为60°,∴∠AOC=60°,∵OA=OC,∴△AOC为等边三角形,∵Q为OA的中点,∴CQ⊥OA,∠OCQ=30°,∴OQ=,由勾股定理可得,CQ=,∵D为AP的中点,∴OD⊥AP,∵Q为OA的中点,∴DQ=,∴当D点CQ的延长线上时,即点C,Q,D三点共线时,CD长最大,最大值为.故选D【点睛】本题考查利用弧与圆心角的关系及垂径定理求相关线段的长度,并且考查线段最大值问题,利用圆的综合性质是解答此题的关键.5、C【分析】点D所转过的路径长是一段弧,是一段圆心角为180°,半径为OD的弧,故根据弧长公式计算即可.【详解】解:BD=4,

∴OD=2

∴点D所转过的路径长==2π.

故选:C.【点睛】本题主要考查了弧长公式:.6、C【解析】延长AB交直线DC于点F,在Rt△BCF中利用坡度的定义求得CF的长,则DF即可求得,然后在直角△ADF中利用三角函数求得AF的长,进而求得AB的长.【详解】延长AB交直线DC于点F.∵在Rt△BCF中,BFCF∴设BF=k,则CF=3k,BC=2k.又∵BC=16,∴k=8,∴BF=8,CF=83.∵DF=DC+CF,∴DF=45+83.∵在Rt△ADF中,tan∠ADF=AFDF∴AF=tan37°×(45+83)≈44.13(米),∵AB=AF-BF,∴AB=44.13-8≈36.1米.故选C.【点睛】本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解,注意利用两个直角三角形的公共边求解是解答此类题型的常用方法.7、D【分析】由题意得,将所求式子化简后,代入即可得.【详解】由题意得:,即又代入可得:原式故选:D.【点睛】本题考查了长方形的周长和面积公式、多项式的因式分解、以及完全平方公式,熟练掌握相关内容是解题的关键.8、B【解析】试题解析:已知点M(2,-3),则点M关于原点对称的点的坐标是(-2,3),故选B.9、A【分析】根据函数图象平移的法则“左加右减,上加下减”的原则进行解答即可.【详解】由“上加下减”的原则可知,将抛物线y=3x2先向向下平移1个单位可得到抛物线y=3x2-1;

由“左加右减”的原则可知,将抛物线y=3x2-1先向左平移2个单位可得到抛物线.

故选A.【点睛】本题考查二次函数图象与几何变换,解题的关键是掌握函数图象平移的法则“左加右减,上加下减”的原则.10、B【分析】一边长为x米,则另外一边长为:8-x,根据它的面积为9平方米,即可列出方程式.【详解】一边长为x米,则另外一边长为:8-x,

由题意得:x(8-x)=9,

故选:B.【点睛】此题考查由实际问题抽相出一元二次方程,解题的关键读懂题意列出方程式.11、A【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.考点:(1)中心对称图形;(2)轴对称图形12、B【分析】过E作EF⊥CG于F,利用相似三角形列出比例式求出投射在墙上的影子DE长度即可.【详解】过E作EF⊥CG于F,设投射在墙上的影子DE长度为x,由题意得:△GFE∽△HAB,∴AB:FE=AH:(GC−x),则240:150=160:(160−x),解得:x=60.故选B.【点睛】本题考查相似三角形的判定与性质,解题突破口是过E作EF⊥CG于F.二、填空题(每题4分,共24分)13、310【分析】利用配方法将函数解析式转化为顶点式,利用二次函数的性质,可求得铅球行进的最大高度;铅球推出后落地时,高度y=0,把实际问题可理解为当y=0时,求得x的值就是铅球落地时的水平距离.【详解】∵y=﹣x2+x+,∴y=﹣(x﹣4)2+3因为﹣<0所以当x=4时,y有最大值为3.所以铅球推出后最大高度是3m.令y=0,即0=﹣(x﹣4)2+3解得x1=10,x2=﹣2(舍去)所以铅球落地时的水平距离是10m.故答案为3、10.【点睛】此题考查了函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解.正确解答本题的关键是掌握二次函数的性质.14、4.【分析】连接AD,分别求出△ABC和扇形AMN的面积,相减即可得出答案.【详解】解:连接AD,∵⊙A与BC相切于点D,∴AD⊥BC,∵AB=AC,∠A=120°,∴∠ABD=∠ACD=30°,BD=CD=,∴AB=2AD,由勾股定理知BD2+AD2=AB2,即+AD2=(2AD)2解得AD=2,∴△ABC的面积=,扇形MAN得面积=,∴阴影部分的面积=.故答案为:.【点睛】本题考查的是圆中求阴影部分的面积,解题关键在于知道阴影部分面积等于三角形ABC的面积减去扇形AMN的面积,要求牢记三角形面积和扇形面积的计算公式.15、()【分析】连接OB,过O作OH⊥BC于H,过O作ON⊥CD于N,根据已知条件求出OC和OB的长即可.【详解】连接OB,过O作OH⊥BC于H,过O作ON⊥CD于N,∵∠COD=120°,CO=DO,∴∠OCD=∠ODC=30°,∵ON⊥CO,∴CN=DN=CD=AB=m,∴ON=CN=m,OC=1m,∵ON⊥BC,∴四边形OHCN是矩形,∴CH=ON=m,OH=CN=m,∴BH=BC-CH=m,∴OB==m,∴在这一过程中,窗框上的点到地面的最大高度为(+1)m,故答案为:(+1).【点睛】本题考查了垂径定理,矩形的性质和判定,勾股定理,掌握知识点是解题关键.16、(-4,3)【分析】根据第二象限点的横坐标是负数,纵坐标是正数,点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值解答.【详解】解:点在第二象限,且到轴的距离为3,到轴的距离为4,点的横坐标为,纵坐标为3,点的坐标为.故答案为.【点睛】本题考查了点的坐标,熟记点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值是解题的关键.17、10π【分析】根据的长就是圆锥的底面周长即可求解.【详解】解:∵圆锥的高h为12cm,OA=13cm,∴圆锥的底面半径为=5cm,∴圆锥的底面周长为10πcm,∴扇形AOC中的长是10πcm,故答案为10π.【点睛】本题考查了圆锥的计算,解题的关键是了解圆锥的底面周长等于展开扇形的弧长.18、y1<y1【分析】根据双曲线所在的象限,得出y随x的增大而增大,即可判断.【详解】解:∵k>0,∴﹣k<0,因此在每个象限内,y随x的增大而增大,∵﹣4<﹣1,∴y1<y1,故答案为:y1<y1.【点睛】此题主要考查反比例函数的图像与性质,解题的关键是熟知反比例函数在各象限的增减性.三、解答题(共78分)19、(1)证明见解析;(2)证明见解析;(3).【分析】(1)如图1中,连接AD.设∠BEC=3α,∠ACD=α,再根据圆周角定理以及三角形内角和与外角的性质证明∠ACB=∠ABC即可解决问题;

(2)如图2中,连接AD,在CD上取一点Z,使得CZ=BD.证明△ADB≌△AZC(SAS),推出AD=AZ即可解决问题;

(3)连接AD,PA,作OK⊥AC于K,OR⊥PC于R,CT⊥FP交FP的延长线于T.假设OH=a,PC=2a,求出sin∠OHK=,从而得出∠OHK=45°,再根据角度的转化得出∠DAG=∠ACO=∠OAK,从而有tan∠ACD=tan∠DAG=tan∠OAK=,进而可求出DG,AG的长,再通过勾股定理以及解直角三角形函数可求出FT,PT的长即可解决问题.【详解】(1)证明:如图1中,连接AD.设∠BEC=3α,∠ACD=α.

∵∠BEC=∠BAC+∠ACD,∴∠BAC=2α,

∵CD是直径,∴∠DAC=90°,

∴∠D=90°-α,∴∠B=∠D=90°-α,

∵∠ACB=180°-∠BAC-∠ABC=180°-2α-(90°-α)=90°-α.

∴∠ABC=∠ACB,

∴AB=AC.(2)证明:如图2中,连接AD,在CD上取一点Z,使得CZ=BD.

∵=,∴DB=CF,

∵∠DBA=∠DCA,CZ=BD,AB=AC,

∴△ADB≌△AZC(SAS),∴AD=AZ,

∵AG⊥DZ,∴DG=GZ,

∴CG=CZ+GZ=BD+DG=CF+DG.(3)解:连接AD,PA,作OK⊥AC于K,OR⊥PC于R,CT⊥FP交FP的延长线于T.

∵CP⊥AC,∴∠ACP=90°,∴PA是直径,

∵OR⊥PC,OK⊥AC,∴PR=RC,∠ORC=∠OKC=∠ACP=90°,

∴四边形OKCR是矩形,∴RC=OK,

∵OH:PC=1:,∴可以假设OH=a,PC=2a,∴PR=RC=a,

∴RC=OK=a,sin∠OHK=,∴∠OHK=45°.

∵OH⊥DH,∴∠DHO=90°,∴∠DHA=180°-90°-45°=45°,

∵CD是直径,∴∠DAC=90°,∴∠ADH=90°-45°=45°,

∴∠DHA=∠ADH,∴AD=AH,

∵∠COP=∠AOD,∴AD=PC,

∴AH=AD=PC=2a,

∴AK=AH+HK=2a+a=3a,

在Rt△AOK中,tan∠OAK=,OA=,∴sin∠OAK=,∵∠ADG+∠DAG=90°,∠ACD+∠ADG=90°,∴∠DAG=∠ACD,

∵AO=CO,∴∠OAK=∠ACO,

∴∠DAG=∠ACO=∠OAK,

∴tan∠ACD=tan∠DAG=tan∠OAK=,

∴AG=3DG,CG=3AG,

∴CG=9DG,

由(2)可知,CG=DG+CF,

∴DG+12=9DG,∴DG=,AG=3DG=3×=,

∴AD=,∴PC=AD=.∵sin∠F=sin∠OAK,∴sin∠F=,∴CT=,FT=,PT=,∴PF=FT-PT=.【点睛】本题属于圆综合题,考查了圆周角定理,垂径定理,全等三角形的判定和性质,解直角三角形,矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.20、教学楼DF的高度为.【分析】延长AB交CF于E,先证明四边形AMFE是矩形,求出EF=AM=3,再设DE=x米,利用Rt△BCE得到AE=x+12,再根据Rt△ADE得到,即可得到x的值,由此根据DF=DE+EF求出结果.【详解】如图,延长AB交CF于E,由题意知:∠DAE=30,∠CBE=45,AB=9米,四边形ABNM是矩形,∵四边形ABNM是矩形,∴AB∥MN,∵CF⊥MN,∴∠AEC=∠MFC=90,∵∠AMF=∠MFC=∠AEF=90,∴四边形AMFE是矩形,∴EF=AM=3,设DE=x米,在Rt△BCE中,∠CBE=45,∴BE=CE=x+3,∵AB=9,∴AE=x+12,在Rt△ADE中,∠DAE=30,∴,∴,解得:,∴DF=DE+EF=(米).【点睛】此题考查利用三角函数解决实际问题,解题中注意线段之间的关系,设未知数很主要,通常是设所求的量,利用图中所给的直角三角形,表示出两条边的长度,根据度数即可列得三角函数关系式,由此解决问题.21、(1)树状图见解析;(2)【解析】分析:(1)根据题意可以用树状图表示出所有的可能结果;

(2)根据(1)中的树状图可以得到小悦拿到的两个粽子都是肉馅的概率.详解:(1)肉粽记为A、红枣粽子记为B、豆沙粽子记为C,由题意可得,

(2)由(1)可得,

小悦拿到的两个粽子都是肉馅的概率是:,

即小悦拿到的两个粽子都是肉馅的概率是.点睛:本题考查列表法与树状图法,解答本题的关键是明确题意,列出相应的树状图,求出相应的概率.22、(1)w=-x2+90x-1800;(2)当x=45时,w有最大值,最大值是225(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元【解析】试题分析:(1)根据销售利润=单个利润×销售量,列出式子整理后即可得;(2)由(1)中的函数解析式,利用二次函数的性质即可得;(3)将w=200代入(1)中的函数解析式,解方程后进行讨论即可得.试题解析:(1)w=(x﹣30)•y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,w与x之间的函数解析式w=﹣x2+90x﹣1800;(2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,∵﹣1<0,当x=45时,w有最大值,最大值是225;(3)当w=200时,﹣x2+90x﹣1800=200,解得x1=40,x2=50,∵50>42,x2=50不符合题意,舍去,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.23、(1);(2)x=﹣5或x=1.【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得.【详解】(1)∵a=2,b=﹣6,c=﹣1,∴△=(﹣6)2﹣4×2×(﹣1)=44>0,则x;(2)∵(x+5)2﹣6(x+5)=0,∴(x+5)(x﹣1)=0,则x+5=0或x﹣1=0,解得:x=﹣5或x=1.【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论